引用本文:徐文灏,石厅.基于自适应事件触发的半马尔科夫跳变系统的有限时间L2-L∞控制[J].控制理论与应用,2025,42(4):722~730.[点击复制]
XU Wen-hao,SHI Ting.Finite-time L2–L∞ control of semi-Markov jump system under adaptive event-triggered scheme[J].Control Theory & Applications,2025,42(4):722~730.[点击复制]
基于自适应事件触发的半马尔科夫跳变系统的有限时间L2-L∞控制
Finite-time L2–L∞ control of semi-Markov jump system under adaptive event-triggered scheme
摘要点击 5  全文点击 1  投稿时间:2023-02-14  修订日期:2025-03-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.30059
  2025,42(4):722-730
中文关键词  马尔科夫过程  半马尔科夫跳变系统  有限时间控制  自适应事件触发  异步控制  闭环系统  状态反馈
英文关键词  Markov process  semi-Markov jump systems  finite-time control  adaptive event-triggered  asynchronous control  closed loop systems  state feedback
基金项目  浙江省自然科学基金项目(LY21F030007)资助.
作者单位E-mail
徐文灏 杭州电子科技大学自动化学院 xuwenhao292@163.com 
石厅* 杭州电子科技大学自动化学院 tingshi@hdu.edu.cn 
中文摘要
      本文使用马尔科夫过程的变体半马尔科夫过程建立了连续时间半马尔科夫跳变系统,并针对该系统研究 了有限时间L2–L∞控制问题.首先,为了处理网络带宽有限的问题,在传感器通道中引入一种自适应事件触发机制, 用以降低系统中的数据传输频率,从而降低通信负担.其次,考虑系统模态不可测的情况,以一定概率对其进行估 计, 进而研究了异步控制问题. 然后,考虑了外部干扰,并引入了L2–L∞性能指标,研究了有限时间控制问题.本文 的设计目标是在确保闭环系统有限时间稳定和满足一定性能指标的同时,降低系统中的通信负担.基于Lyapun ov理论,得到状态反馈控制的设计算法.最后,用RLC电路作为实例来验证算法的有效性和可用性.
英文摘要
      This article builds a continuous time semi-Markov jump system using a variant of Markov process called a semi-Markov process and investigates the finite-time L2–L∞ control problem for it. Firstly, in order to handle the limited network bandwidth, an adaptive event-triggered scheme is applied in the sensor-to-controller network with the aim of reducing the frequency of data transmission and the communication burden. Next, considering the unavailability of the plant mode, a new mode is used to obtain an estimation, upon which the asynchronous control problem is studied. Moreover, the external disturbance is also taken into consideration. Then the L2–L∞ performance index is introduced, based on which the finite-time L2–L∞ control problem is investigated. The main objective is to determine a controller that ensures stability of the closed-loop system with a certain level of performance while reducing the communication burden to some extent. By employing Lyapunov theory, the state-feedback control algorithm is obtained. Finally, a RLC circuit is used to verify the effectiveness of the theoretical findings.