引用本文: | 徐文灏,石厅.基于自适应事件触发的半马尔科夫跳变系统的有限时间L2-L∞控制[J].控制理论与应用,2025,42(4):722~730.[点击复制] |
XU Wen-hao,SHI Ting.Finite-time L2–L∞ control of semi-Markov jump system under adaptive event-triggered scheme[J].Control Theory & Applications,2025,42(4):722~730.[点击复制] |
|
基于自适应事件触发的半马尔科夫跳变系统的有限时间L2-L∞控制 |
Finite-time L2–L∞ control of semi-Markov jump system under adaptive event-triggered scheme |
摘要点击 5 全文点击 1 投稿时间:2023-02-14 修订日期:2025-03-08 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.30059 |
2025,42(4):722-730 |
中文关键词 马尔科夫过程 半马尔科夫跳变系统 有限时间控制 自适应事件触发 异步控制 闭环系统 状态反馈 |
英文关键词 Markov process semi-Markov jump systems finite-time control adaptive event-triggered asynchronous control closed loop systems state feedback |
基金项目 浙江省自然科学基金项目(LY21F030007)资助. |
|
中文摘要 |
本文使用马尔科夫过程的变体半马尔科夫过程建立了连续时间半马尔科夫跳变系统,并针对该系统研究
了有限时间L2–L∞控制问题.首先,为了处理网络带宽有限的问题,在传感器通道中引入一种自适应事件触发机制,
用以降低系统中的数据传输频率,从而降低通信负担.其次,考虑系统模态不可测的情况,以一定概率对其进行估
计, 进而研究了异步控制问题. 然后,考虑了外部干扰,并引入了L2–L∞性能指标,研究了有限时间控制问题.本文
的设计目标是在确保闭环系统有限时间稳定和满足一定性能指标的同时,降低系统中的通信负担.基于Lyapun
ov理论,得到状态反馈控制的设计算法.最后,用RLC电路作为实例来验证算法的有效性和可用性. |
英文摘要 |
This article builds a continuous time semi-Markov jump system using a variant of Markov process called
a semi-Markov process and investigates the finite-time L2–L∞ control problem for it. Firstly, in order to handle the
limited network bandwidth, an adaptive event-triggered scheme is applied in the sensor-to-controller network with the aim
of reducing the frequency of data transmission and the communication burden. Next, considering the unavailability of
the plant mode, a new mode is used to obtain an estimation, upon which the asynchronous control problem is studied.
Moreover, the external disturbance is also taken into consideration. Then the L2–L∞ performance index is introduced,
based on which the finite-time L2–L∞ control problem is investigated. The main objective is to determine a controller that
ensures stability of the closed-loop system with a certain level of performance while reducing the communication burden
to some extent. By employing Lyapunov theory, the state-feedback control algorithm is obtained. Finally, a RLC circuit is
used to verify the effectiveness of the theoretical findings. |
|
|
|
|
|