引用本文:王远飞,杜城龙,彭浩,李繁飙,桂卫华.基于平衡补偿滑模策略的飞机防滑制动与纠偏协同控制[J].控制理论与应用,2025,42(3):442~454.[点击复制]
WANG Yuan-fei,DU Cheng-long,PENG Hao,LI Fan-biao,GUI Wei-hua.Cooperative control of aircraft anti-skid braking and deflection correction based on balance-compensated sliding mode strategy[J].Control Theory and Technology,2025,42(3):442~454.[点击复制]
基于平衡补偿滑模策略的飞机防滑制动与纠偏协同控制
Cooperative control of aircraft anti-skid braking and deflection correction based on balance-compensated sliding mode strategy
摘要点击 37  全文点击 4  投稿时间:2023-04-20  修订日期:2024-08-27
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.30241
  2025,42(3):442-454
中文关键词  飞机防滑刹车系统  滑模控制  制动与纠偏协同控制  跑道辨识  神经网络
英文关键词  aircraft anti-skid braking system  sliding mode control  cooperative control of braking and deflection  runway identification  neural networks
基金项目  国家优秀青年科学基金项目(62222317), 国家自然科学基金项目(62303492, 61973319), 湖南省重点研发计划项目(2023GK2023), 湖南省科技创 新项目(2022WZ1001), 湖南省自然科学基金青年基金项目(2023JJ40765), 长沙市自然科学基金项目(kq2208287), 中国博士后创新人才支持计划 和博士后科学基金面上项目(2023M733940)资助.
作者单位E-mail
王远飞 中南大学 wangyuanfei@csu.edu.cn 
杜城龙 中南大学  
彭浩* 中南大学 penghao@csu.edu.cn 
李繁飙 中南大学  
桂卫华 中南大学  
中文摘要
      本文针对飞机地面滑跑制动过程中跑道环境未知、机轮打滑、侧风干扰、非对称制动等影响飞机安全可靠滑跑的问题,提出一种基于自适应神经网络和平衡补偿滑模策略的飞机防滑制动与跑道纠偏协同控制方法.首先,考虑实际刹车过程中横纵力矩耦合及侧风干扰等因素,建立飞机地面滑跑非对称动力学模型.在此基础上,提出基于轮胎–跑道结合系数波动范围特征的跑道在线辨识方法,解决变跑道环境下结合系数的在线辨识问题.此外,通过设计自适应径向基(RBF)神经网络实现对未知侧风干扰的有效估计,并提出基于平衡补偿滑模策略的前轮纠偏与双侧主轮协同制动控制方法,实现飞机在侧风干扰条件下的防滑制动与跑道纠偏协同控制.实验仿真表明,本文提出的控制策略可有效避免机轮打滑、抑制飞机偏航,同时提高飞机制动效率,增强飞机地面滑跑的可靠性与安全性.
英文摘要
      This paper proposes a cooperative control method of anti-skid braking and runway correction based on the adaptive neural network and balance-compensated sliding mode strategy. It addresses issues such as unknown runway conditions, wheel skidding, crosswind disturbance, and asymmetric braking that impact the safety and reliability of aircraft ground maneuvers. Firstly, the asymmetric dynamics model of aircraft-on-ground braking is established, considering crosswind disturbance and the coupling of lateral and longitudinal moments during actual braking. On this foundation, an online runway identification method based on the fluctuation range of the tire-runway adhesion coefficient is introduced, resolving the challenge of online identification in changing runway conditions. Additionally, an adaptive radial basis function (RBF) neural network is designed to estimate unknown crosswind disturbances. A co-design method is proposed, based on the balance-compensated sliding mode strategy. This method enables front wheel turning-based runway correction and bilateral main wheels’ differential balance compensation, allowing for cooperative control of anti-skid braking and runway correction under crosswind disturbances. Experimental simulations demonstrate that the control strategy proposed in this paper effectively prevents wheel skidding and mitigates runway deviations. It also enhances aircraft braking efficiency, thus improving the reliability and safety of aircraft ground maneuvers.