引用本文:焦世广,侯忠生.运行时间区间可变的地铁列车无模型自适应迭代学习控制[J].控制理论与应用,2025,42(3):642~648.[点击复制]
JIAO Shi-guang,HOU Zhong-sheng.Model-free adaptive iterative learning control for subway train with variable operation time interval[J].Control Theory and Technology,2025,42(3):642~648.[点击复制]
运行时间区间可变的地铁列车无模型自适应迭代学习控制
Model-free adaptive iterative learning control for subway train with variable operation time interval
摘要点击 32  全文点击 5  投稿时间:2023-07-05  修订日期:2024-10-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2024.30465
  2025,42(3):642-648
中文关键词  地铁列车  无模型自适应控制  无模型自适应迭代学习控制  迭代时间区间随机变化
英文关键词  subway train  model-free adaptive control  model-free adaptive iterative learning control  random variation of iteration operation time interval
基金项目  国家自然科学基金项目(61833001, 62373206)资助.
作者单位E-mail
焦世广 青岛大学 jsguang8012@163.com 
侯忠生* 青岛大学 zshou@qdu.edu.cn 
中文摘要
      针对地铁列车系统非严格重复运行的特性,提出了一种运行时间区间可变的地铁列车无模型自适应迭代学习控制算法.首先,利用紧格式动态线性化方法将地铁列车动力学模型转化为等价的数据模型;其次,仅利用系统输入/输出数据设计了一种适用于地铁列车迭代时间长度随机变化的改进无模型自适应迭代学习控制算法;最后,给出了该算法的收敛性分析,并通过仿真验证了所提算法的有效性.
英文摘要
      For the characteristics of non-strict repetitive operation of subway train, a model-free adaptive iterative learning control algorithm for subway trains with variable operation time interval is proposed. Firstly, the compact format dynamic linearization method is used to convert the subway train dynamics model into an equivalent data model; Secondly, an improved model free adaptive iterative learning control algorithm for the random change of subway train iterative time length is designed using only the input/output data of train system. Finally, the convergence analysis of the proposed algorithm is presented, and the effectiveness of the proposed algorithm is verified through simulation.