引用本文: | 杨碧璇,郭铁信,吴锦标.基于g-期望的部分可观测非零和随机微分博弈(英文)[J].控制理论与应用,2019,36(1):13~21.[点击复制] |
YANG Bi-xuan,GUO Tie-xin,WU Jin-biao.Partially observed nonzero-sum stochastic differential games with g-expectations[J].Control Theory and Technology,2019,36(1):13~21.[点击复制] |
|
基于g-期望的部分可观测非零和随机微分博弈(英文) |
Partially observed nonzero-sum stochastic differential games with g-expectations |
摘要点击 2551 全文点击 1301 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2018.18085 |
2019,36(1):13-21 |
中文关键词 随机微分博弈 g-期望 正倒向随机微分方程 最大值原理 验证定理 |
英文关键词 stochastic differential game g-expectation forward-backward stochastic differential equation maximum principle verification theorem |
基金项目 Supported by the National Natural Science Foundation of China (11671404, 11571369), the Provincial Natural Science Foundation of Hunan (2017JJ 3405) and the Yu Ying Project of Central South University. |
|
中文摘要 |
本文研究了g-期望下的部分可观测非零和随机微分博弈系统, 该系统的状态方程由It?o-L′evy过程驱动, 成本函
数由g-期望描述. 根据Girsanov定理和凸变分技巧, 本文得到了最大值原理和验证定理. 为对所获结果进行说明, 本文讨
论了关于资产负债管理的博弈问题. |
英文摘要 |
This paper is concerned with a partially observed nonzero-sum stochastic differential game system under
g-expectation, where the state is governed by a It?o-L′evy process and the cost functionals are described by g-expectations.
Based on Girsanov’s theorem and convex variation techniques, we derive a maximum principle and a verification theorem.
An asset-liability management game problem is discussed to illustrate the results. |