引用本文:张小英,冯红银萍.干扰与控制非同位一维薛定谔方程的输出跟踪(英文)[J].控制理论与应用,2021,38(3):373~379.[点击复制]
ZHANG Xiao-ying,FENG Hong-yinping.Output tracking for one-dimensional Schr¨odinger equation with boundary control unmatched disturbance[J].Control Theory and Technology,2021,38(3):373~379.[点击复制]
干扰与控制非同位一维薛定谔方程的输出跟踪(英文)
Output tracking for one-dimensional Schr¨odinger equation with boundary control unmatched disturbance
摘要点击 1881  全文点击 657    
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.20095
  2021,38(3):373-379
中文关键词  边界控制  干扰  输出跟踪  薛定谔方程
英文关键词  boundary control  disturbance  output tracking  Schr¨odinger equation
基金项目  Supported by the National Natural Science Foundation of China(61873153), the Youth Science and Technology Research of Shanxi Province (201801D221013) and the Science and Technology Innovation Fund Project of Shanxi Agricultural University (2017ZZ06).
作者单位
张小英* 山西农业大学 
冯红银萍 山西大学 
中文摘要
      本文研究了干扰与控制非同位一维薛定谔方程的输出跟踪. 首先, 利用系统的无穷维结构与输出设计了用 于估计干扰的无穷维干扰估计器. 其次, 建立自适应伺服机制使得跟踪误差~u(1; t) 2 L2(0;1), 且闭环系统的所有 子系统有界. 最后, 对闭环系统进行数值模拟, 模拟结果表明控制方案的有效性.
英文摘要
      This paper considers the output tracking for one-dimensional Schr¨odinger equation with disturbance via noncollocated boundary control. Firstly, we design an infinite-dimensional disturbance estimator to estimate the disturbance by virtue of the output and infinite structure of the system. Secondly, the adaptive servomechanism is designed to achieve the performance output tracking and the tracking error ~u(1; t) 2 L2(0;1) and all the internal-loops are bounded. Finally, we present some numerical simulations to illustrate the effectiveness of the proposed scheme.