引用本文: | 张群力.环状脉冲控制下的多个混沌系统同步(英文)[J].控制理论与应用,2010,27(2):226~232.[点击复制] |
ZHANG Qun-li.Synchronization of multi-chaotic systems via ring impulsive control[J].Control Theory and Technology,2010,27(2):226~232.[点击复制] |
|
环状脉冲控制下的多个混沌系统同步(英文) |
Synchronization of multi-chaotic systems via ring impulsive control |
摘要点击 2175 全文点击 1234 投稿时间:2009-06-30 修订日期:2009-09-09 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2010,27(2):226-232 |
中文关键词 环状脉冲控制 混沌同步 Gronwall不等式 时滞Hopfield神经网络 Lorenz系统 |
英文关键词 ring impulsive control chaos synchronization Gronwall Inequality time-delay Hopfield neural networks Lorenz system |
基金项目 |
|
中文摘要 |
针对多个混沌系统同步问题, 提出了一种基于脉冲控制理论环状控制方法. 利用微分算子中值定理和矩阵运算, 通过Gronwall不等式和跳跃的脉冲响应设计控制器, 从而推导出了环状脉冲控制下多个混沌系统全局同步.典型的时滞混沌Hopfield神经网络和Lorenz混沌系统仿真结果表明, 该方法有效、可靠, 且具有强鲁棒性. |
英文摘要 |
The ring control approach to multi-chaotic systems synchronization based on the impulsive control theory is presented in this article. The operator differential mid-value theorem and the matrix operations are applied to them. With the help of Gronwall Inequality, the controller is thus obtained according to the jumped impulsive response. The global synchronization of multi-chaotic systems via ring impulsive control is derived. Finally, the simulation results of a typical time-delay chaotic Hopfield neural networks and chaotic Lorenz system demonstrate that the proposed approach is effective
and feasible, and has strong robust performance. |