引用本文:周波,戴先中.自适应噪声定界的改进集员辨识算法[J].控制理论与应用,2012,29(2):167~171.[点击复制]
ZHOU Bo,DAI Xian-zhong.Improved set-membership identification algorithm with adaptive noise bounding[J].Control Theory and Technology,2012,29(2):167~171.[点击复制]
自适应噪声定界的改进集员辨识算法
Improved set-membership identification algorithm with adaptive noise bounding
摘要点击 2605  全文点击 1844  投稿时间:2011-05-04  修订日期:2011-07-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.2.PCTA110480
  2012,29(2):167-171
中文关键词  集员辨识  未知但有界误差  最优定界椭球  噪声调定
英文关键词  set-membership identification  unknown-but-bounded noise  optimal bounding ellipsoid  noise-tuning
基金项目  国家自然科学基金资助项目(61005092); 教育部博士点新教师基金资助项目(0100092120026).
作者单位E-mail
周波* 复杂工程系统测量与控制教育部重点实验室 东南大学 自动化学院 zhoubo@seu.edu.cn 
戴先中 复杂工程系统测量与控制教育部重点实验室 东南大学 自动化学院  
中文摘要
      集员辨识所需的系统噪声边界在现实应用中往往难于精确确定, 通常采取的过估边界将导致算法性能的退化. 本文针对缺乏足够先验噪声边界知识下的集员辨识问题进行了相应的研究, 通过对输入干扰和测量误差的有界假设, 将系统噪声边界建模为一个依赖于模型参数的时变量, 由此提出了一种根据估计参数自适应调定噪声边界的改进最优定界椭球辨识算法, 避免了过估噪声边界假设引起的保守性增大的缺陷, 提高了算法的收敛速度. 仿真中将本文提出的改进算法和带固定过估噪声边界的原始算法进行了比较, 表明了该方法的有效性.
英文摘要
      In the set-membership identification (SMI), it is difficult to precisely determine the bounds of the system noise in most real applications. The widely used over-estimated bounds will deteriorate the performance of the algorithm. We investigate this problem when the a priori knowledge of the noise bound is insufficient. Under the assumptions of bounded system inputs and measurement errors, we model the noise bound as a time-varying variable depending on some model parameters. We propose an enhanced optimal bounding ellipsoid (OBE) identification algorithm with adaptive bound-tuning to adjust the noise bound based on the estimated parameters, which prevents the increased conservation from the overestimated bound assumption and improves the convergence rate of the algorithm. Simulation results show higher effectiveness of the proposed algorithm than that of the conventional algorithm with fixed over-estimated noise bound.