引用本文:张星昌.具有动态补偿能力的神经网络模型及其在动态系统建模中的应用[J].控制理论与应用,1996,13(6):823~826.[点击复制]
ZHANG Xingchang.a neural network model with dynamic compensation and its applications in dynamic in dynamic system modelling[J].Control Theory and Technology,1996,13(6):823~826.[点击复制]
具有动态补偿能力的神经网络模型及其在动态系统建模中的应用
a neural network model with dynamic compensation and its applications in dynamic in dynamic system modelling
摘要点击 1128  全文点击 500  投稿时间:1995-05-05  修订日期:1995-12-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1996,13(6):823-826
中文关键词  多层前馈网络  系统建模  网络训练  动态补偿
英文关键词  multi- layer feedforward networks  system modelling  training of networks  dynamically compensating
基金项目  
作者单位
张星昌 中国科学院自动化研究所 
中文摘要
      本文在多层前馈神经网络模型基础上,引入误差动态反馈环节,从而形成一种新的具有动态补偿能力的神经网络模型.新模型的训练利用反向传播原理实现.采用该模型对非线性动态系统进行建模时,能显著提高建模精度,特别是在网络模型工作时,对新出现的输出误差具有动态补偿能力.文中给出了新网络模型的结构和学习算法,最后是仿真实例.
英文摘要
      By introducing a dynamic error feedback link in a multi- layer feedforward neural network,this paper proposes a new neural network model which has the dynamically compensation capability。During both training and working of this new network model,we apply the principle of dynamic error back propagation to make the feedback compensation.Using this model in nonlinear dynamic system modelling,the dynamic error can be effectively reduced and the modelling accuracy can be significantly raised.The structure and learning algorithm of this new neural network model are given.The application to real data modelling is included to demonstrate the effectiveness of the new model.