引用本文: | 邓自立.时域Wiener状态滤波新方法[J].控制理论与应用,2004,21(3):367~372.[点击复制] |
DENG Zi-li.New approach to Wiener state filtering in time-domain[J].Control Theory and Technology,2004,21(3):367~372.[点击复制] |
|
时域Wiener状态滤波新方法 |
New approach to Wiener state filtering in time-domain |
摘要点击 1861 全文点击 1146 投稿时间:2002-09-18 修订日期:2003-05-26 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2004.3.009 |
2004,21(3):367-372 |
中文关键词 随机系统 状态估计 Wiener滤波 Kalman滤波 时域方法 |
英文关键词 stochastic system state estimation Wiener filtering Kalman filtering time-domain approach |
基金项目 国家自然科学基金项目(60374026); 黑龙江省自然科学基金项目(F01-15). |
|
中文摘要 |
基于稳态Kalman滤波器和射影理论,提出了统一和通用的时域Wiener状态滤波新方法,用它得到带非零均值相关噪声线性随机系统的渐近稳定的Wiener状态估值器和解耦Wiener状态估值器.它可统一处理状态滤波、预报和平滑问题.发现了Kalman滤波器和Wiener滤波器之间的变换关系,Wiener状态估值器可由Kalman估值器通过自回归滑动平均(ARMA)新息模型得到.一个仿真例子说明了其有效性. |
英文摘要 |
Based on the steady-state Kalman filter and projection theory,a new unified and general approach to the time-domain Wiener state filtering is presented,by which the asymptotically stable Wiener state estimator and decoupled Wiener state estimators are presented for linear stochastic systems with correlated noises having non-zero means.It can handle the state filtering,prediction and smoothing problems in a unified framework.The transformation relationship between the Kalman filters and Wiener filters is discovered,the Wiener state estimators can be obtained from the Kalman estimators by means of the autoregressive moving average (ARMA) innovation model.A simulation example shows its effectiveness. |