引用本文: | 郑毅,李少远,魏永松.通讯信息约束下具有全局稳定性的分布式系统预测控制(英文)[J].控制理论与应用,2017,34(5):575~585.[点击复制] |
ZHENG Yi,LI Shao-yuan,WEI Yong-song.Global stabilizing distributed model predictive control systems with limited communication[J].Control Theory and Technology,2017,34(5):575~585.[点击复制] |
|
通讯信息约束下具有全局稳定性的分布式系统预测控制(英文) |
Global stabilizing distributed model predictive control systems with limited communication |
摘要点击 3014 全文点击 2029 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.16029 |
2017,34(5):575-585 |
中文关键词 大规模系统 预测控制 分布式预测控制 约束控制 |
英文关键词 large-scale systems model predictive control distributed model predictive control constrained control |
基金项目 large-scale systems; model predictive control; distributed model predictive control; constrained control |
|
中文摘要 |
本文针对一类由状态相互耦合的子系统组成的分布式系统, 提出了一种可以处理输入约束的保证稳定性的非
迭代协调分布式预测控制方法(distributed model predictive control, DMPC). 该方法中, 每个控制器在求解控制率时只与
其它控制器通信一次来满足系统对通信负荷限制; 同时, 通过优化全局性能指标来提高优化性能. 另外, 该方法在优化
问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差, 进而保证各子系统优化问
题初始可行时, 后续时刻相继可行. 在此基础上, 通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少
的通信和计算负荷情况下, 提高系统优化性能. 即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的
渐进稳定性. 仿真结果验证了本文所提出方法的有效性. |
英文摘要 |
A novel stabilized distributed model predictive control (DMPC) with input constraints and global cost
optimization coordination strategy is proposed for spatially distributed coupling systems which are presented by states
interacted models. The distributed controllers make decisions locally and merely communicate once a control period with
each others. Cooperation is promoted by consideration of the system-wide objective by each local controller. Consistency
constraints, which bound the estimation errors of the interaction sequences among subsystems, are designed to guarantee
that, if an initially feasible solution can be found, subsequent feasibility of the algorithm is guaranteed at every update, and
that the closed-loop system is asymptotically stable. The proposed control algorithm could reduce the communication and
computation loads with improved performance of entire systems, and guarantee the recursive feasibility and the asymptotically
stability even when the controlled subsystems are strong coupled. Simulation results show that the performance of
the proposed DMPC is very close to that of a centralized model predictive control (MPC). |
|
|
|
|
|