引用本文:金辉宇,殷保群.非线性采样系统指数稳定的新条件[J].控制理论与应用,2009,26(8):821~826.[点击复制]
JIN Hui-yu,YIN Bao-qun.New conditions for the exponential stability of nonlinear sampled-data systems[J].Control Theory and Technology,2009,26(8):821~826.[点击复制]
非线性采样系统指数稳定的新条件
New conditions for the exponential stability of nonlinear sampled-data systems
摘要点击 1963  全文点击 2855  投稿时间:2008-07-14  修订日期:2008-12-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.8.CCTA080739
  2009,26(8):821-826
中文关键词  非线性  采样系统  指数稳定  近似模型  Lyapunov函数
英文关键词  nonlinear  sampled-data systems  exponential stability  approximate model  Lyapunov function
基金项目  中国科学技术大学青年基金项目(KA2100100002)
作者单位E-mail
金辉宇* 中国科学技术大学自动化系 jinhy@ustc.edu.cn 
殷保群 中国科学技术大学自动化系  
中文摘要
      研究了非线性采样系统的稳定性问题. 对以采样周期为参数的离散时间系统族, 证明了全局指数稳定的Lyapunov定理和逆定理. 分别基于系统的一般近似模型和Euler近似模型, 给出了闭环系统全局指数稳定的新条件. 与现有结果相比, 取消了Lyapunov函数全局Lipschitz连续的假设, 减弱了闭环系统全局指数稳定的充分条件.
英文摘要
      Stability problem of nonlinear sampled-data systems is investigated. The Lyapunov theorem and its converse theorem of globally exponential stability for the discrete-time systems family in which the sampling period is a parameter are proved. New sufficient conditions that guarantee globally exponential stability of the closed-loop sampled-data systems are presented respectively for the general approximation model and the Euler approximation model. Compared with earlier results, new conditions ignore the assumption that Lyapunov functions are globally Lipschitz, and hence weaken the sufficient conditions to warrant globally exponential stability of the closed-loop systems.