引用本文:王杏丹,姚郁,郭健.非线性末制导系统参数灵敏度分析[J].控制理论与应用,2016,33(4):486~492.[点击复制]
WANG Xing-dan,YAO Yu,GUO Jian.Parameter sensitivity analysis for nonlinear terminal guidance system[J].Control Theory and Technology,2016,33(4):486~492.[点击复制]
非线性末制导系统参数灵敏度分析
Parameter sensitivity analysis for nonlinear terminal guidance system
摘要点击 3330  全文点击 2347  投稿时间:2015-05-14  修订日期:2015-11-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50403
  2016,33(4):486-492
中文关键词  制导系统  脱靶量  灵敏度分析  伴随法
英文关键词  guidance system  miss distance  sensitivity analysis  adjoint method
基金项目  国家自然科学基金(61333001, 61074160).
作者单位E-mail
王杏丹* 哈尔滨工业大学 xingdan-wang@163.com 
姚郁 哈尔滨工业大学  
郭健 中国航天科工集团第三研究院  
中文摘要
      末制导系统参数随着飞行环境及飞行条件的改变而存在摄动, 针对这一问题本文提出根据动态灵敏度来 分析参数摄动对脱靶量的影响. 基于伴随法推导出与系统动态方程相同规模的伴随方程, 并通过一次伴随求解计算 得到脱靶量对所有可调参数及摄动参数的动态灵敏度, 有效的提高了计算效率. 传统的直接分析法是将系统状态变 量直接对参数变量进行微分, 需要对每个参数变量求解一组代数或微分方程, 对于状态变量及参数变量较多的情况 效率较低. 本文基于两种方法对末制导系统的参数灵敏度进行分析, 分析结果揭示了参数摄动对脱靶量的影响程 度, 较小的参数灵敏度为提高系统的鲁棒性提供了依据.
英文摘要
      This paper analyzes the parameter robustness for a homing terminal guidance system (TGS). The parameter robustness is reflected in assessing the miss distance performance influenced by the parameter perturbation which is described as the miss distance sensitivity with respect to the parameter. An efficient numerical method for sensitivity computation of nonlinear TGS is developed based on the adjoint method, which consists of both forward integration of the TGS and backward integration of the adjoint equation. Based on adjoint method, the sensitivity analysis of the TGS against various scenarios of target maneuvers is conducted. Analysis results are examined with the direct sensitivity analysis method, which reveal the perfect accuracy of the adjoint method. Comparing to direct method, adjoint method provides the miss distance sensitivity with respect to all parameters in a single simulation. It reveals great advantage in the calculation efficiency regarding integral index functions. By the parameter robustness analysis, with adjoint method, parameters with minimum sensitivities can be obtained to ensure the robustness of TGS.