引用本文: | 梁相龙,姚建勇.带有输出约束的液压机械臂自适应神经网络力跟踪控制[J].控制理论与应用,2025,42(1):138~148.[点击复制] |
LIANG Xiang-long,YAO Jian-yong.Adaptive neural network force tracking control of hydraulic manipulators with output constraints[J].Control Theory and Technology,2025,42(1):138~148.[点击复制] |
|
带有输出约束的液压机械臂自适应神经网络力跟踪控制 |
Adaptive neural network force tracking control of hydraulic manipulators with output constraints |
摘要点击 3330 全文点击 37 投稿时间:2022-08-15 修订日期:2024-11-28 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20725 |
2025,42(1):138-148 |
中文关键词 液压机械臂 导纳控制 动态面控制 神经网络 力跟踪控制 未知环境 |
英文关键词 hydraulic manipulator admittance control dynamic surface control neural network force tracking control unknown environment |
基金项目 国家重点研发计划项目(2021YFB2011300), 国家自然科学基金项目(52075262)资助. |
|
中文摘要 |
为解决带有输出约束的液压机械臂动力学模型未知问题并提升液压机械臂在未知环境下的力跟踪性能, 本文提出了一种基于积分障碍李雅普诺夫函数的自适应神经网络导纳控制方法. 首先, 分析了液压机械臂的机械和液压系统动力学模型, 根据阻抗控制原理, 提出了基于环境参数估计的参考轨迹自适应生成方法; 然后, 考虑系统 输出受限和机械系统动力学模型未知, 利用径向基函数神经网络设计自适应神经网络控制器; 同时, 引入动态面控制方法以避免对虚拟信号进行直接求导, 并通过李雅普诺夫方法分析了闭环控制系统的稳定性; 最后, 利用MATLAB/Simulink, Simscape Multibody 和Simscape Fluids仿真平台对液压机械臂进行仿真研究, 结果表明所设计的控制律对未知机械系统动力学具有良好的鲁棒性, 可以实现良好的位置和力跟踪控制, 且确保系统输出不超过预设的范围. |
英文摘要 |
In order to solve the problem of unknown dynamics of the hydraulic manipulator with output constraints and improve the force tracking performance of the hydraulic manipulator in unknown environments, an adaptive neural network admittance control method integrating integral barrier Lyapunov function is proposed in this paper. Firstly, the mechanical and hydraulic system dynamics of the hydraulic manipulator are addressed, and according to the principle of impedance control, an adaptive generation method of reference trajectory based on environment parameters estimation is developed. Then, an adaptive radial basis function neural network tracking control is developed for the hydraulic manipulator with unknown mechanical system dynamics and output constraints. Meanwhile, the dynamic surface control approach is introduced to circumvent the direct derivation of virtual signals, and the stability of the closed-loop control system is analyzed via Lyapunov technique. Finally, using the MATLAB/Simulink, Simscape Multibody and Simscape Fluids simulation platforms to simulate the hydraulic manipulator, the results indicate that the developed control law has good robustness with respect to unknown mechanical system dynamics, achieves satisfactory position and force tracking performance, and ensures the system output does not exceed the prescribed range. |
|
|
|
|
|