引用本文: | 赵华荣,彭力,谢林柏,杨杰龙,于洪年.虚假数据注入攻击下多智能体系统动态事件触发双向编队[J].控制理论与应用,2025,42(5):911~920.[点击复制] |
ZHAO Hua-rong,PENG Li,XIE Lin-bo,YANG Jie-long,YU Hong-nian.Dynamic event-triggered bipartite formation for multi-agent systems with false data injection attacks[J].Control Theory & Applications,2025,42(5):911~920.[点击复制] |
|
虚假数据注入攻击下多智能体系统动态事件触发双向编队 |
Dynamic event-triggered bipartite formation for multi-agent systems with false data injection attacks |
摘要点击 4121 全文点击 63 投稿时间:2023-02-11 修订日期:2024-12-06 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2024.30052 |
2025,42(5):911-920 |
中文关键词 双向编队 数据驱动控制 虚假数据注入攻击 动态事件触发 |
英文关键词 bipartite formation data-driven control false data injection attacks dynamic event-triggered |
基金项目 国家自然科学基金(62403216), 中央高校基本科研业务费专项资金项目(JUSRP123061), 江苏省基础研究计划(BK20241608), 无锡市科技发展资 金项目(K20231015), 无锡市青年科技人才托举项目(TJXD–2024–11), 111计划项目(B23008)资助. |
|
中文摘要 |
针对未知动力学模型的多输入多输出非线性离散时间多智能体系统的虚假数据注入攻击问题, 本文设计
了一种基于径向基函数神经网络的攻击识别策略, 并针对其通讯受限问题, 设计了一种动态事件触发控制策略. 首
先, 利用伪偏导技术, 在智能体的每个工作点上建立了一种关于被控系统输入输出数据的紧格式动态线性化数据模
型, 并给出了该模型相应参数的估计法则. 此外, 利用符号图论分析了多智能体系统的双向编队控制问题, 设计了一
种组合测量误差方程, 将双向编队控制问题转化为一致性控制问题, 并设计了一种动态事件触发的无模型自适应双
向编队控制算法. 最后, 给出了双向编队跟踪误差的收敛性证明, 并通过仿真实验验证了该算法的有效性. |
英文摘要 |
To address the issue of false data injection attacks in multi-input-multi-output nonlinear discrete-time multiagent systems (MASs) with unknown dynamics models, this research presents a radial basis function neural networkbased attack recognition scheme. Additionally, it proposes a dynamic event-triggered control strategy to address its
communication-constrained problem. Firstly, a compact form dynamic linearization data model for the controlled system’s
input-output data is established at each working point of the agent using pseudo-derivative technology, and the estimation
rule of the corresponding parameters of the model is provided. In addition, the bipartite formation control problem of the
MASs is analyzed using signed graph theory, a combined measurement error equation is proposed to transform the bipartite
formation control problem into a consensus control problem, and a dynamic event-triggered model-free adaptive bipartite
formation control algorithm is proposed. Finally, the convergence of the bipartite formation tracking error is demonstrated,
and the effectiveness of the algorithm is verified by simulation experiments. |
|
|
|
|
|