引用本文: | 孙珂,马志垚,马宏军,佟绍成.具有状态和输入量化的分数阶非线性系统自适应模糊控制[J].控制理论与应用,2025,42(6):1132~1141.[点击复制] |
SUN Ke,MA Zhi-yao,MA Hong-jun,TONG Shao-cheng.Adaptive fuzzy control for fractional-order nonlinear systems with state and input quantization[J].Control Theory & Applications,2025,42(6):1132~1141.[点击复制] |
|
具有状态和输入量化的分数阶非线性系统自适应模糊控制 |
Adaptive fuzzy control for fractional-order nonlinear systems with state and input quantization |
摘要点击 120 全文点击 18 投稿时间:2024-05-07 修订日期:2025-05-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2025.40260 |
2025,42(6):1132-1141 |
中文关键词 分数阶非线性系统 状态和输入量化 模糊逻辑系统 反步递推 |
英文关键词 fractional-order nonlinear systems state and input quantization fuzzy logic system backstepping |
基金项目 国家自然科学基金项目(62203199, 62173172, 61873306), 辽宁省自然科学基金面上项目(2023–MS–299), 辽宁省教育厅面上项目(LJKMZ202209 74), 锦绣英才–青年拔尖人才项目(JXYC230101)资助. |
|
中文摘要 |
本文主要探讨在状态和输入量化条件下的分数阶非线性系统的模糊自适应控制问题. 首先, 基于状态非量
化的情况, 设计了状态量化下的虚拟控制器和实际控制器, 其偏导数是量化状态的乘积, 以实现最终的控制设计; 其
次, 为确保由于状态量化和输入量化导致的一些列误差有界, 构造了一个足够光滑的分数阶投影算子并设计了一种
模糊自适应反步递推控制策略. 进而建立并严格证明了分数阶一致有界准则, 在已知参数有界的前提下, 解决了分
数阶意义下的误差信号一致有界问题. 在分数阶一致有界准则的保障下, 确保了所有闭环信号的有界性; 最后, 通过
仿真结果验证了该方法的有效性. |
英文摘要 |
This article mainly discusses the fuzzy adaptive control problem of fractional-order nonlinear systems under state and input quantization conditions. To begin with, based on the case of non-quantized states, virtual and actual
controllers under state quantization are designed, where their partial derivatives are the product of the quantized states, to
achieve the final control design. Next, to ensure that the series of errors caused by state and input quantization is bounded, a
sufficiently smooth fractional-order projection operator is constructed, and a fuzzy adaptive backstepping recursive control
strategy is designed. Furthermore, a fractional-order uniform boundedness criterion is established and rigorously proven,
addressing the issue of uniform boundedness of the error signal in the fractional-order sense under the premise of known
bounded parameters. With the assurance of the fractional-order uniform boundedness criterion, the boundedness of all
closed-loop signals is guaranteed. Finally, the effectiveness of this method is validated through simulation results. |
|
|
|
|
|