| 引用本文: | 江维海,程放,李丞,朱仲文,季传龙.基于模型自学习的燃料电池空气系统自抗扰控制[J].控制理论与应用,2025,42(8):1587~1595.[点击复制] |
| JIANG Wei-hai,CHENG Fang,LI Cheng,ZHU Zhong-wen,JI Chuan-long.Active disturbance rejection control of fuel cell air system based on model self-learning[J].Control Theory & Applications,2025,42(8):1587~1595.[点击复制] |
|
| 基于模型自学习的燃料电池空气系统自抗扰控制 |
| Active disturbance rejection control of fuel cell air system based on model self-learning |
| 摘要点击 309 全文点击 67 投稿时间:2024-07-31 修订日期:2025-09-05 |
| 查看全文 查看/发表评论 下载PDF阅读器 |
| DOI编号 10.7641/CTA.2025.40416 |
| 2025,42(8):1587-1595 |
| 中文关键词 质子交换膜燃料电池 模型训练 阶次选择 自抗扰控制 |
| 英文关键词 proton exchange membrane fuel cells (PEMFC) model training order selection active disturbance rejec tion control |
| 基金项目 安徽省科技重大专项项目(202203a05020006),先进内燃动力全国重点实验室开放课题重点项目(K2023–2),中央高校基本科研业务费专项资金 项目(JZ2024HGTB0234)资助. |
|
| 中文摘要 |
| 面向控制的燃料电池空气系统模型存在工况适应范围小的问题,因此,系统时变后导致的模型不准确将恶
化基于模型的控制效果.对此,本研究开发了一种基于贝叶斯学习模型的自抗扰控制策略,以实现宽工况范围和长
寿命周期内的精确控制.首先,建立面向控制的燃料电池空气系统四阶模型,采用贝叶斯估计,根据不同工况下燃料
电池系统的测试数据对模型参数进行训练,并借助极大似然估计选择空压机流量多项式模型的适宜阶次,降低模型
参数时变造成的影响,增大模型的工况适应范围.此外,针对空气系统流量与压力的耦合问题,设计了自抗扰解耦控
制方案,将耦合效应视为系统总扰动,利用扩张状态观测器实时估计并补偿至控制律中,实现精准解耦.最后,基于
MATLAB/Simulink环境搭建了燃料电池空气系统仿真平台,仿真结果显示,该方法有效确保了模型高精度,实现了
流量与压力的精确协同控制,保障了燃料电池系统的安全高效运行. |
| 英文摘要 |
| The control-oriented model of the fuel cell air system exhibits limited adaptability to operating conditions,
thereby exacerbating the inaccuracies caused by temporal changes in the system and subsequently compromising its control
effectiveness. To overcome this, a study presents an active disturbance rejection control approach rooted in Bayesian learn
ing, aimed at precise control across broad operating conditions and longevity. A fourth-order model tailored for fuel cell
air systems is formulated, with Bayesian estimation refining parameters using test data from diverse working conditions.
Maximum likelihood estimation selects the optimal polynomial order for the air compressor flow model, mitigating the
impact of time-varying parameters and enhancing model adaptability. Addressing flow-pressure coupling, an active dis
turbance rejection decoupling control is introduced. Treating coupling as systemic disturbance, an extended state observer
estimates and compensates in real-time, enabling precise decoupling. A MATLAB/Simulink simulation platform validates
the method. Results highlight its effectiveness in ensuring model accuracy, facilitating precise flow-pressure control, and
ensuring safe, efficient fuel cell system operation. |
|
|
|
|
|