引用本文: | 李峰,杨岳松,李生权.基于分数阶滤波器和BiGRU神经网络的Wiener非线性系统建模与辨识[J].控制理论与应用,2025,42(6):1181~1190.[点击复制] |
LI Feng,YANG Yue-song,LI Sheng-quan.Modeling and identification of Wiener nonlinear system based on fractional order filter and BiGRU neural network[J].Control Theory & Applications,2025,42(6):1181~1190.[点击复制] |
|
基于分数阶滤波器和BiGRU神经网络的Wiener非线性系统建模与辨识 |
Modeling and identification of Wiener nonlinear system based on fractional order filter and BiGRU neural network |
摘要点击 108 全文点击 15 投稿时间:2025-01-10 修订日期:2025-06-25 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2025.50018 |
2025,42(6):1181-1190 |
中文关键词 非线性Wiener系统 分数阶滤波器 双向GRU神经网络 参数辨识 永磁同步电机 |
英文关键词 nonlinear Wiener system fractional order filters bidirectional GRU neural networks parameter identification permanent magnet synchronous motor |
基金项目 国家自然科学基金项目(62003151), 江苏高校“青蓝工程”项目([2025]4), 江苏理工学院中吴青年创新人才支持计划项目(202102003), 江苏理工学 院研究生科研与实践创新计划项目(XSJCX24 06)资助. |
|
中文摘要 |
本文提出了一种基于分数阶滤波器和双向门控循环单元(BiGRU)神经网络的Wiener非线性系统建模与辨
识方法, 并应用于永磁同步电机的电流和电压预测. 首先, 通过Grunwald-Letnikov ¨ 方法计算分数阶滤波器的未知系
数, 并利用该滤波器对输入数据进行滤波, 去除高频噪声, 增强数据的稳健性; 其次, 为了提升对序列深层次特征的
捕捉能力, 使用BiGRU神经网络同时获取序列数据的过去和未来信息, 并通过自适应动量估计技术更新 BiGRU网
络的参数. 仿真结果表明, 提出的Wiener系统能够有效建立永磁同步电机系统模型, 取得了较好的预测效果. 与整数
阶滤波器BiGRU-attention神经网络相比, 电压预测值的均方误差降低了30.87%, 平均绝对误差降低了26.97%; 电流
预测值的均方误差降低了34.42%, 平均绝对误差降低了14.88%. |
英文摘要 |
In this paper, modeling and identification method of Wiener nonlinear system based on fractional order filter
and bi-directional gated recurrent unit (BiGRU) neural network is proposed, and applied to current and voltage prediction
of permanent magnet synchronous motors. Firstly, the unknown coefficient of the fractional order filter is computed by
the Grunwald-Letnikov method, and then the filter is utilized to filter the input data to remove the high frequency noise ¨
and enhance the robustness of the data. Secondly, in order to improve the ability to capture the deeper features of the
sequences, the BiGRU neural network is used to simultaneously acquire the past and future information of the sequence
data, and the parameters of the BiGRU network are updated by an adaptive momentum estimation technique. Simulation
results show that the proposed Wiener system could effectively model the permanent magnet synchronous motor system
and achieve better prediction results. Compared with the integer order filter BiGRU neural network, the mean square error
of the voltage prediction value is reduced by 30.87% and the mean absolute error is reduced by 26.97%, the mean square
error of the current prediction value is reduced by 34.42% and the mean absolute error is reduced by 14.88%. |
|
|
|
|
|