引用本文: | 莫立坡,张豪哲.带有非一致约束和通讯时延的异构网络约束一致性[J].控制理论与应用,2024,41(8):1427~1437.[点击复制] |
MO Li-po,ZHANG Hao-zhe.Constrained consensus of heterogeneous networks with nonuniform constraints and nonuniform communication delays[J].Control Theory and Technology,2024,41(8):1427~1437.[点击复制] |
|
带有非一致约束和通讯时延的异构网络约束一致性 |
Constrained consensus of heterogeneous networks with nonuniform constraints and nonuniform communication delays |
摘要点击 3491 全文点击 71 投稿时间:2022-06-07 修订日期:2024-05-04 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20503 |
2024,41(8):1427-1437 |
中文关键词 异构网络,非凸速度约束,位置约束,通讯时延,一致性 |
英文关键词 Heterogeneous networks,nonconvex velocity constraints,position constraints,communication delays,consensus |
基金项目 国家自然科学基金 (No. 61973329),北京市自然科学基金 (No. Z180005) |
|
中文摘要 |
本文主要致力于研究一类具有非一致的凸位置约束、非凸速度约束和非一致的通信时延的异构多智能体
网络的约束一致性问题, 其中异构多智能体网络由一阶和二阶智能体构成. 首先, 为每个智能体设计了一个分布式
控制算法, 同时, 引入了两类坐标变换, 将带有时延的异构系统转化为带有异构非线性误差和无时延的线性时变系
统. 为了处理异构非线性误差, 本文采用了一种几何学技巧, 使组合变量的非线性动态可以被线性动态所控制. 然
后, 通过投影算子和非负矩阵的性质, 在一些弱的假设下, 证明了随着时间的演进, 非线性误差能收敛为零, 从而达
成系统的受限一致性. 最后, 本文给出两个数值算例验证了结果的正确性. |
英文摘要 |
This paper reports on the constrained consensus problem of heterogeneous multi-agent networks (HMANs)
with nonuniform convex position constraints, nonconvex velocity constraints and nonuniform communication delays, where
the HAMN is composed of first-order and second-order agents. A distributed control algorithm is first designed for each
agent, and two coordinate transformations are introduced to change the heterogeneous dynamics with delays into the linear
time varying dynamics with heterogeneous nonlinear errors and delay-free. To deal with the heterogeneous nonlinear errors,
a geometrical technique is adopted to make the nonlinear dynamics of the combination variables be controlled by a linear
one. Then, by the properties of projection operator and nonnegative matrix, it is shown that the nonlinear errors would
converge to zero and the constrained consensus can be reached as time evolves under some mild assumptions. Finally, we
give two numerical examples to show the correctness of the results. |
|
|
|
|
|