引用本文:陈伟利,叶明顺,唐明董,郑子彬.基于模型堆叠的以太坊钓鱼诈骗账户识别方法[J].控制理论与应用,2024,41(8):1361~1368.[点击复制]
CHEN Wei-li,YE Ming-shun,TANG Ming-dong,ZHENG Zi-bin.Ethereum Phishing Scam Account Identification based on model stacking[J].Control Theory and Technology,2024,41(8):1361~1368.[点击复制]
基于模型堆叠的以太坊钓鱼诈骗账户识别方法
Ethereum Phishing Scam Account Identification based on model stacking
摘要点击 3305  全文点击 55  投稿时间:2022-11-26  修订日期:2024-06-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.21035
  2024,41(8):1361-1368
中文关键词  区块链  以太坊  钓鱼诈骗  模型堆叠
英文关键词  blockchain  ethereum  phishing scam  model stacking
基金项目  国家重点研发计划项目(2020YFB1006002), 国家自然科学基金面上项目(61976061), 广东省基础与应用基础研究基金项目(2021A1515011939)
作者单位E-mail
陈伟利 广东外语外贸大学 mathutopia@163.com 
叶明顺 广东外语外贸大学  
唐明董* 广东外语外贸大学 mdtang@126.com 
郑子彬 中山大学  
中文摘要
      近年来, 钓鱼诈骗已成为区块链平台中不可忽视的欺诈类型, 对用户金融安全构成了重大威胁. 为了解决 这一问题, 本文提出了一种基于区块链交易的网络钓鱼账户检测框架, 并以以太坊为例验证了其有效性. 具体而言, 该框架通过引入数据样本过滤规则来缓解数据不均衡性以及减少计算量, 采用级联特征抽取方法以提取有效特征, 并基于模型堆叠构建集成分类算法建立模型以识别以太坊上的钓鱼诈骗账户. 实验结果表明, 该框架能够有效地 识别以太坊上的钓鱼诈骗账户, 具有一定的实际应用价值.
英文摘要
      In recent years, phishing scams have become a type of fraud that cannot be ignored in blockchain platforms, posing a major threat to users’ financial security. To solve this problem, this paper proposes a framework for phishing account detection based on blockchain transactions, and verifies its effectiveness by taking ethereum as an example. Specifically, the framework alleviates data imbalances and reduces computational effort by introducing sample filtering rules, adopts a cascading feature extraction method to extract valid features, and builds an ensemble classification algorithm based on model stacking to identify phishing accounts. The experimental results show that the framework can effectively identify phishing fraud accounts on ethereum and has certain practical application value.