引用本文:张鑫,胡志强,刘健,曾俊宝.大小舵布局水下无人航行器最优控制分配方法[J].控制理论与应用,2025,42(5):885~891.[点击复制]
ZHANG Xin,HU Zhi-qiang,LIU Jian,ZENG Jun-bao.Optimal control allocation method for the autonomous underwater vehicle with big and small rudders layout[J].Control Theory & Applications,2025,42(5):885~891.[点击复制]
大小舵布局水下无人航行器最优控制分配方法
Optimal control allocation method for the autonomous underwater vehicle with big and small rudders layout
摘要点击 404  全文点击 64  投稿时间:2023-03-14  修订日期:2024-11-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2024.30131
  2025,42(5):885-891
中文关键词  水下无人航行器  X型舵  控制分配  二次规划  容错控制  OSQP
英文关键词  autonomous underwater vehicle  X-rudder  control allocation  quadratic programming  fault tolerant control  OSQP
基金项目  中国科学院青年创新促进会项目资助.
作者单位E-mail
张鑫 中国科学院沈阳自动化研究所 zhangxin1@sia.cn 
胡志强* 中国科学院沈阳自动化研究所 hzq@sia.cn 
刘健 中国科学院沈阳自动化研究所  
曾俊宝 中国科学院沈阳自动化研究所  
中文摘要
      针对中高速水下无人航行器(AUV)提高容错控制能力、兼顾机动性与控制精度等需求, 本文提出一种“非 对称X型艉舵+小水平艏舵”的AUV舵布局策略, 并研究与之相适应的高效控制分配方法. 本文提出的舵布局策略 通过大小舵配合, 在力矩需求较小时, 优先使用小舵以提高控制精度, 力矩需求较大时, 大小舵协作以满足机动性需 求. 建立了适用于该布局策略的控制分配模型并转化为二次规划问题, 采用两阶段法求解该模型, 依次为确定大舵 使能阶段和求解小舵需求阶段. 所形成的二次规划问题采用OSQP求解方法, 首先, 通过快速迭代得到中低精度解, 再进行一次解精确处理, 兼顾求解效率和精度. 最后, 通过机动性与精度、容错控制及不同二次规划方法, 求解效率 对比等3方面仿真, 验证了研究方法的有效性.
英文摘要
      In order to improve the fault-tolerant control ability of medium-high speed autonomous underwater vehicle (AUV) and take into account maneuverability and control accuracy, an AUV rudder layout strategy of“asymmetric X-type stern rudder + small horizontal bow rudder” is proposed and an efficient control allocation method is studied. The small rudders are preferred to improve the control accuracy when the torque demand is small, and all the rudders cooperate to meet the maneuverability demand when the torque demand is large. Then a control allocation model suitable for the layout strategy is established and the model is transformed to a quadratic programming problem. The two-stage method is used to solve the model: the stage of determining the enable of the large rudders and the stage of solving the demand of the small rudders. The operator splitting quadratic program (OSQP) method is used to solve the quadratic programming problem. In the OSQP method, firstly, the low and medium precision solution is obtained by fast iteration, and then the solution precision is processed once. Finally, the effectiveness of the proposed method is verified by the simulation of maneuverability and accuracy, fault-tolerant control and the comparison of solving efficiency of different quadratic programming methods.