| 引用本文: | 单泽彪,魏昌斌,刘小松,王宇航.基于轮式里程计的无人车分层控制策略[J].控制理论与应用,2025,42(10):2066~2074.[点击复制] |
| Shan Ze-biao,Wei Chang-bin,Liu Xiao-song,Wang Yu-hang.Wheeled odometer based hierarchical control strategy for unmanned vehicle[J].Control Theory & Applications,2025,42(10):2066~2074.[点击复制] |
|
| 基于轮式里程计的无人车分层控制策略 |
| Wheeled odometer based hierarchical control strategy for unmanned vehicle |
| 摘要点击 280 全文点击 46 投稿时间:2023-07-05 修订日期:2025-03-02 |
| 查看全文 查看/发表评论 下载PDF阅读器 |
| DOI编号 10.7641/CTA.2024.30472 |
| 2025,42(10):2066-2074 |
| 中文关键词 无人车控制 轮式里程计 期望航向角 自抗扰控制 分层控制策略 |
| 英文关键词 unmanned vehicle control wheeled odometer expectation heading angle active disturbance rejection control hierarchical control strategy |
| 基金项目 国家自然科学基金项目(61973330),吉林省自然科学基金项目(YDZJ202301ZYTS412),吉林省教育厅产业化培育项目(JJKH20240940CY),吉林 省教育厅科学技术项目(JJKH20240938KJ)资助. |
|
| 中文摘要 |
| 针对电动两驱差速型无人车,由于路面摩擦、车辆重心不稳等因素的存在,左右两侧驱动轮受到的行驶阻
力不同,导致车辆的行驶方向总是出现有规律的向左或者向右,偏离无人车纵轴线的现象.传统的无人车行驶方案
是靠图像、基站定位等方式根据外界的参考环境获得偏移误差,然后对车身进行调整,此类方法应对复杂环境的能
力有限.本文提出了一种基于自抗扰控制的仅依靠轮式里程计的无人车分层控制策略.首先,根据差速型无人车的
里程计信息推算出偏移的距离,上层控制器根据偏移期望航向角函数,调整车辆的航向角达到误差设计控制行驶的
目的. 下层控制器基于动力学模型设计的扩张状态观测器估计车辆运动产生的扰动以对两侧电机进行补偿.最后,
通过数值仿真和实车测试实验,验证了所提分层控制策略的有效性. |
| 英文摘要 |
| For the electric two-drive differential unmanned vehicle, due to the existence of road friction, vehicle center
of gravity instability and other factors, the driving resistance of the left and right driving wheels is different, resulting in the
driving direction of the vehicle always deviates from the longitudinal axis of the unmanned vehicle regularly to the left or
right. The traditional driving scheme of unmanned vehicles relies on images, base station positioning and other methods
to obtain the offset error according to the external reference environment and then adjust the body. Such methods have
limited ability to cope with the complex environment. This paper presents a hierarchical control strategy for unmanned
vehicles based on active disturbance rejection control, which relies only on wheeled odometer. Firstly, the offset distance
is calculated according to the odometer information of the differential unmanned vehicle, and the upper controller designs
the expected course angle function according to the offset error, and adjusts the course angle of the vehicle to achieve
the purpose of driving control. The lower controller designs an extended state observer based on the dynamics model to
estimate the disturbance caused by vehicle motion and compensate the motors on both sides. Finally, the effectiveness of
the proposed hierarchical control strategy is verified by numerical simulation and real vehicle test. |
|
|
|
|
|