| 引用本文: | 焦玉召,牛健雄,赵红梅,娄泰山,赵良玉,丁国强,孔汉.模型不确定和噪声互相关下的分布式容积平滑变结构融合算法[J].控制理论与应用,2025,42(10):1999~2009.[点击复制] |
| JIAO Yu-zhao,NIU Jian-xiong,ZHAO Hong-mei,LOU Tai-shan,ZHAO Liang-yu,DING Guo-qiang,KONG Han.Distributed cubature smooth variable structure fusion algorithm with model uncertainties and cross-correlation noise[J].Control Theory & Applications,2025,42(10):1999~2009.[点击复制] |
|
| 模型不确定和噪声互相关下的分布式容积平滑变结构融合算法 |
| Distributed cubature smooth variable structure fusion algorithm with model uncertainties and cross-correlation noise |
| 摘要点击 222 全文点击 45 投稿时间:2023-07-31 修订日期:2025-03-15 |
| 查看全文 查看/发表评论 下载PDF阅读器 |
| DOI编号 10.7641/CTA.2019.90089 |
| 2025,42(10):1999-2009 |
| 中文关键词 平滑变结构滤波 模型参数不确定 互相关噪声 分布式融合 系统辨识与建模 |
| 英文关键词 smooth variable structure filter model parameters uncertainties cross-correlation noise distributed fusion system identification and modelling |
| 基金项目 河南省自然科学基金项目(242300421716,232300420418), 河南省重点专项项目(241111222900),河南省科技攻关项目(242102220044,242102210034)资助. |
|
| 中文摘要 |
| 针对模型参数不确定和噪声互相关下的多传感器非线性系统状态估计问题,本文首先提出一种新的模型
不确定和噪声互相关下的容积平滑变结构滤波算法.其次,针对多传感器系统,推导了噪声互相关下,任意局部估
计器之间互协方差的通用计算框架,并利用容积规则计算互协方差中的非线性积分.然后,针对模型参数不确定和
噪声互相关下的多传感器非线性系统,提出了基于矩阵加权的分布式容积平滑变结构融合算法.最后,仿真实验结
果表明,本文所提算法能够有效克服模型不确定和互相关噪声的影响,具有更高的状态估计精度. |
| 英文摘要 |
| The state estimation for multi-sensor nonlinear systems with model parameters uncertainty and correlated
noise is considered. Firstly, a new cubature smooth variable structure filter with model uncertainty and correlation noise is
proposed. Secondly, a general cross-covariance framework of any local estimators is derived for multi-sensor systems with
correlated noise, and the nonlinear integral is calculated by Cubature rule. Then, based on matrix weighting, the distributed
Cubature smooth variable structure fusion algorithm is proposed for multi-sensor nonlinear systems with model parameters
uncertainty and correlation noise. Finally, the simulation results show that the proposed algorithms can effectively overcome
the interference of model parameters uncertainties and correlation noise, and also have higher estimation accuracy. |
|
|
|
|
|