引用本文: | 王龙 ,黄琳.系数空间中多项式的鲁棒稳定性和有理函数的严格正实不变性*[J].控制理论与应用,1992,9(2):155~160.[点击复制] |
WANG Long and HUANG Lin.Robust Stability of Polynomials and Strictly Positive Realness Invariance of Rational Functions in Coefficient Space[J].Control Theory and Technology,1992,9(2):155~160.[点击复制] |
|
系数空间中多项式的鲁棒稳定性和有理函数的严格正实不变性* |
Robust Stability of Polynomials and Strictly Positive Realness Invariance of Rational Functions in Coefficient Space |
摘要点击 1141 全文点击 485 投稿时间:1990-08-30 修订日期:1991-05-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1992,9(2):155-160 |
中文关键词 线性系统 多项式 有理函数 稳定性 鲁棒性 严格正实 系数空间 |
英文关键词 linear systems polynomials rational functions stability robustness strict positive realness coefficient space |
基金项目 |
|
中文摘要 |
本文在多项式的系数空间中讨论离散时间意义下多项式的鲁棒稳定性和有理函数的严格正实不变性,证明了对于系数空间中的某种超矩形,其顶点多项式的稳定性就保证了全族无穷个多项式的稳定性;对于有理函数的严格正实性,本文也得到了类似的结论。 |
英文摘要 |
This paper discusses robust stability of polynomials and strictly positive realness invariance of rational functions in coefficient space in the sense of discrete time. We prove that, for certain superrectangle in coefficient space, the stability of all vertex polynomials implies the stability of the whole family. Similar results have been obtained for the strict positive realness of rational functions. |