| 引用本文: | 芮 勇,金丕彦.基于人工神经网络的FMS物料搬运机器人的故障诊断[J].控制理论与应用,1994,11(4):460~463.[点击复制] |
| RUI Yong,JIN Piyan.An Artificial Neural Network Based Fault-Diagnosis Method for FMS Element Transfer Robot[J].Control Theory & Applications,1994,11(4):460~463.[点击复制] |
|
| 基于人工神经网络的FMS物料搬运机器人的故障诊断 |
| An Artificial Neural Network Based Fault-Diagnosis Method for FMS Element Transfer Robot |
| 摘要点击 1556 全文点击 623 投稿时间:1993-04-19 修订日期:1994-01-17 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 |
| 1994,11(4):460-463 |
| 中文关键词 人工神经网络 自适应谐振理论ART FMS物料搬运机器人 故障诊断 |
| 英文关键词 artificial neural network adaptive resonance theory FMS element transfer robot fault-diagnosis |
| 基金项目 |
|
| 中文摘要 |
| 本文讨论了一种无导师的神经网络模型—自适应谐振理论ART,详细分析了ART的工作原理及故障诊断过程。本文以FMS中的物料搬运机器人的故障诊断为例,详细说明了故障样本编码,ART的自学习,智能化诊断过程。并给出了仿真结果(在PC-486/33上实现),仿真结果表明ART是一种有效且实用的故障诊断方法。 |
| 英文摘要 |
| A successful non-teacher Artificial Neural Network model—Adaptive Resonance Theory (ART) model has been discussed in this paper. Also, we analyzed in details the operating principles of the ART model and the fault-diagnosis process. We used the FMS element transfer robot as an example to illustrate the whole fault-diagnosis process, which includes sample coding, training and diagnosing. Simulation results have been given (accomplished in PC-486/33), and the results show that ART is an effective and practical fault-diagnosis method. |