引用本文: | 丁锋.多变量系统的辅助模型辨识方法的收敛性分析*[J].控制理论与应用,1997,14(2):192~200.[点击复制] |
DING Feng.Convergence Analysis of the Auxiliary Model Identification Algorithm for Multivariable Systems[J].Control Theory and Technology,1997,14(2):192~200.[点击复制] |
|
多变量系统的辅助模型辨识方法的收敛性分析* |
Convergence Analysis of the Auxiliary Model Identification Algorithm for Multivariable Systems |
摘要点击 1140 全文点击 522 投稿时间:1995-03-12 修订日期:1996-09-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1997,14(2):192-200 |
中文关键词 多变量系统 参数估计 条件数 辅助模型方法 鞅收敛定理 |
英文关键词 Multivariable system parameter estimation conditional number auxiliary model identification algorithm martingale convergence theorem |
基金项目 |
|
中文摘要 |
丁锋,谢新民[1]假设协方差阵P0-1(t)=的最大特征值与最小特征值之比(即条件数)有界,和系统噪声{w(t)}方差有界,证明了辅助模型辨识其法参数估计的一致收致性.本文将分别放松这两个条件,即ⅰ)条件数无界,ⅱ)系统噪声为非平稳噪声,且方差无界,探讨了辅助模型算法的收敛性.分析表明在这种较弱的假设下,辅助模型算法保持很强的鲁棒性,参数估计是一致收敛的. |
英文摘要 |
The convergence of the recursive auxiliary model (RAM)identification algorithm was proved provided that both ratio of the maximum to minimum eigenvalues of the covariance matrix (t)= [i. e. conditional number] and the variance of the observation noise {w(t)} are bounded in reference [1]. In this paper,the convergence rate of RAM algorithm is studied under either unbounded conditional number or unbounded noise variance. The results show that the parameter estimates given by RAM algorithm are consistently convergent and that this algorithm is robust. |