引用本文: | 胡根生,邓飞其.具分段损失函数的支持向量机回归及在投资决策中的应用[J].控制理论与应用,2006,23(2):315~318.[点击复制] |
HU Gen-sheng,DENG Fei-qi.Support vector regression with piecewise loss function and its application in investment decision[J].Control Theory and Technology,2006,23(2):315~318.[点击复制] |
|
具分段损失函数的支持向量机回归及在投资决策中的应用 |
Support vector regression with piecewise loss function and its application in investment decision |
摘要点击 1659 全文点击 2226 投稿时间:2004-12-20 修订日期:2005-07-12 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2006,23(2):315-318 |
中文关键词 支持向量机回归 损失函数 投资决策 |
英文关键词 support vector regression loss function investment decision |
基金项目 国家自然科学基金资助项目(60374023); 广东省自然科学基金资助项目(011629) |
|
中文摘要 |
支持向量机回归模型的性能与所选用的损失函数有很大关系.本文提出一种具分段损失函数的支持向量机回归模型,其分段损失函数对落在不同区间的误差项采用不同的惩罚函数形式,并将该模型应用于投资决策问题中,估计收益率向量的联合概率密度函数和最优投资组合.仿真实验表明,其性能要优于一般的支持向量回归方法. |
英文摘要 |
The selection of loss function plays an important role to the performance of support vector regression(SVR) model.This paper proposes an SVR model with piecewise loss function,which gives different penalty values for deviation in different regions.The SVR model is applied in the problem of investment decision to estimate the joint probability density function of yield vector and the optimal portfolio.Experiments show that its performance is superior to that of standard SVR method. |