引用本文: | 张光华,连峰,韩崇昭,王婷婷.势平衡多目标多伯努利滤波器高斯混合实现的收敛性分析[J].控制理论与应用,2016,33(10):1405~1411.[点击复制] |
ZHANG Guang-hua,LIAN Feng,HAN Chong-zhao,WANG Ting-ting.Convergence analysis for the Gaussian mixture implementation of the CBMeMBer filter[J].Control Theory and Technology,2016,33(10):1405~1411.[点击复制] |
|
势平衡多目标多伯努利滤波器高斯混合实现的收敛性分析 |
Convergence analysis for the Gaussian mixture implementation of the CBMeMBer filter |
摘要点击 3325 全文点击 1610 投稿时间:2015-10-27 修订日期:2016-07-12 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.50850 |
2016,33(10):1405-1411 |
中文关键词 多目标跟踪 随机有限集 多伯努利 高斯混合 收敛性分析 |
英文关键词 multi-target tracking random finite set multi-Bernoulli Gaussian mixture convergence analysis |
基金项目 国家重点基础研究发展计划(“973”计划)(2013CB329405), 国家自然科学基金创新研究群体项目(61221063), 国家自然科学基金项目(61573271, 61473217, 61370037)资助. |
|
中文摘要 |
研究了势平衡多目标多伯努利(cardinality balanced multi-target multi-Bernoulli, CBMeMBer) 滤波器高斯混
合(Gaussian mixture, GM)实现的收敛性问题. 证明在线性高斯条件下, 若GM–CBMeMBer 滤波器的高斯项足够多,
则它一致收敛于真实的CBMeMBer滤波器. 并且证明在弱非线性条件下, GM–CBMeMBer滤波器的扩展卡尔曼(extended
Kalman, EK)滤波近似实现—– EK–GM–CBMeMBer滤波器, 若每个高斯项的协方差足够小, 也一致收敛于真
实的CBMeMBer 滤波器. 本文的研究目的是从理论上给出CBMeMBer 滤波器GM实现的收敛结果, 以完善CBMe-
MBer 滤波器对多目标跟踪的理论研究. |
英文摘要 |
The convergence for the Gaussian mixture (GM) implementation of the cardinality balanced multi-target
multi-Bernoulli (CBMeMBer) filter is studied. This paper proves that the GM–CBMeMBer filter converges uniformly
to the true CBMeMBer filter in the linear Gaussian model as the number of Gaussians in the mixture tends to infinity.
In addition, this paper proves the extended Kalman (EK) filter approximations of the GM–CBMeMBer filter in weak
nonlinear condition — EK–GM–CBMeMBer filter, converges uniformly to the true CBMeMBer filter as the covariance
of each Gaussian term tends to zero. The purpose of this paper is to theoretically present the convergence results of the
CBMeMBer filter’s GM implementation, perfecting the theoretical research of the CBMeMBer filter for the multi-target
tracking problem. |
|
|
|
|
|