引用本文:郭金玉,王霞,李元.基于MEWMA的自适应KLPP的非线性过程故障检测[J].控制理论与应用,2024,41(11):2033~2024.[点击复制]
GUO Jin-yu,WANG Xia,LI Yuan.Fault detection of nonlinear process based on adaptive KLPP of MEWMA[J].Control Theory and Technology,2024,41(11):2033~2024.[点击复制]
基于MEWMA的自适应KLPP的非线性过程故障检测
Fault detection of nonlinear process based on adaptive KLPP of MEWMA
摘要点击 155  全文点击 31  投稿时间:2022-06-18  修订日期:2023-01-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20545
  2024,41(11):2033-2024
中文关键词  故障检测  非线性过程  多元指数加权移动平均  自适应监控统计量  核局部保持投影算法
英文关键词  fault detection  nonlinear process  multivariate exponentially weighted moving average  adaptive monitoring statistic  kernel locality preserving projections algorithm
基金项目  国家自然科学基金项目(62273242), 辽宁省教育厅基金项目(JYTMS20231516)资助
作者单位E-mail
郭金玉 沈阳化工大学 969554959@qq.com 
王霞 沈阳化工大学  
李元* 沈阳化工大学  
中文摘要
      针对非线性动态过程中的微小扰动问题, 本文提出一种基于多元指数加权移动平均(MEWMA)的自适应核局部保持投影(KLPP)的非线性过程故障检测算法. 首先, 构造一个具有动态特性的数据矩阵, 并引入核函数, 执行KLPP算法; 其次, 白化KLPP提取的特征分量, 并采用MEWMA预测非线性动态过程中的均值漂移; 最后, 将估计的均值漂移与白化后的特征分量相结合, 构造一个自适应监控统计量, 并利用核密度估计确定其控制限. 将所提出的监测方案应用于一个非线性数值例子和(TE)过程进行仿真分析, 仿真结果表明, 该方法具有可行性和优越性.
英文摘要
      For the small disturbance problem in nonlinear dynamic process, a fault detection of nonlinear process algorithm based on the adaptive kernel locality preserving projections (KLPP) of multivariate exponentially weighted moving average (MEWMA) is proposed in this paper. Firstly, a data matrix with dynamic characteristics is constructed, and the kernel function is introduced to execute the KLPP algorithm. Secondly, the feature vectors extracted by the KLPP are hitened. The MEWMA is used to predict the mean shifts in nonlinear dynamic process. Finally, an adaptive monitoring statistic is constructed by combining the estimated mean shift with the whitened feature vectors, and its control limit is determined by using the kernel density estimation. The proposed monitoring scheme is applied to a nonlinear numerical example and the TE process for simulation analysis. The simulation results show that the method is feasible and superior.