引用本文:韩华,丁永生,郝矿荣.基于协同关联粒子滤波算法的交互多视频目标跟踪(英文)[J].控制理论与应用,2013,30(9):1187~1193.[点击复制]
HAN Hua,DING Yong-sheng,HAO Kuang-rong.Collaborative associated particle filter for interactive multi-target tracking in video surveillance[J].Control Theory and Technology,2013,30(9):1187~1193.[点击复制]
基于协同关联粒子滤波算法的交互多视频目标跟踪(英文)
Collaborative associated particle filter for interactive multi-target tracking in video surveillance
摘要点击 3268  全文点击 1167  投稿时间:2012-10-22  修订日期:2013-05-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.12237
  2013,30(9):1187-1193
中文关键词  粒子滤波  协同理论  数据关联  多目标跟踪
英文关键词  particle filter  collaborative theory  data association  multi-targets tracking
基金项目  This work was supported by the Key Project of the National Nature Science Foundation of China (No.61134009), the National NatureScience Foundation of China (Nos. 61272097, 61305014), Specialized Research Fund for Shanghai Leading Talents, Project of the Shanghai Committee of Science and Technology (No.11JC1400200), the Fundamental Research Funds for the Central Universities, Innovation Program of Shanghai Municipal Education Commission (12ZZ182), the Nature Science Foundation of Shanghai (13ZR1455200), and Funding Scheme for Training Young Teachers in Shanghai Colleges (ZZGJD13006).
作者单位E-mail
韩华 东华大学 信息科学与技术学院
上海工程技术大学 电子电气工程学院 
 
丁永生* 东华大学 信息科学与技术学院
东华大学 数字化纺织服装技术教育部工程研究中心 
ysding@dhu.edu.cn 
郝矿荣 东华大学 信息科学与技术学院
东华大学 数字化纺织服装技术教育部工程研究中心 
 
中文摘要
      首先介绍了带马尔科夫跳变非线性系统(JMNSs)的状态估计问题, 然后总结了JMNSs最优状态估计的难点和具有交互作用的多目标跟踪问题. 在总结分析各类不同算法的基础上, 提出了一种协同关联粒子滤波算法来解决目标数目在变化的交互多目标跟踪问题, 改进后的算法不需要观测与目标状态关联和目标数量已知的假设. 最后, 通过仿真实验验证了改进后的算法在跟踪效果上优于现有算法, 并能成功估计目标的数量.
英文摘要
      We first introduce the state estimation of jump Markovian nonlinear systems (JMNSs), with a summary of difficulties in this estimation; and then we review the problems of the interactive multi-target tracking. Based on the analysis of various algorithms, a collaborative associated particle filter is proposed to solve the problem of interactive multitarget tracking with time-varying target numbers. The proposed algorithm neither needs the assumption of the association of observations with target states, nor the knowledge of the target numbers. Simulation results show that the proposed algorithm provides better tracking performances and more accurate estimation of the target numbers.