引用本文: | 李训经.关于分布参数系统最佳调节器的稳定裕度[J].控制理论与应用,1986,3(1):76~82.[点击复制] |
Li Xunjing.MARGIN OF STABILITY FOR THE OPTIMAL REGULATOR OF DISTRIBUTED PARAMETER SYSTEMS[J].Control Theory and Technology,1986,3(1):76~82.[点击复制] |
|
关于分布参数系统最佳调节器的稳定裕度 |
MARGIN OF STABILITY FOR THE OPTIMAL REGULATOR OF DISTRIBUTED PARAMETER SYSTEMS |
摘要点击 932 全文点击 432 投稿时间:1984-03-06 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1986,3(1):76-82 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
本文直接证明
定理 假设
1. x(?)是dx(t)/dt=Ax(t)+Bu(t),x(0)=x0的mild解,其中A是Hilbert空间X上的强连续半群eAt(t≥0)的母元,u(?)∈L2([0,+∞],Z),B∈L(Z,X);
2. 当∫∞0║u(t)║2dt<+∞和∫∞0║Lx(t)║2dt<+∞时
∫+∞0║x(t)║2dt<+∞;
3. P≥0满足ATP+PA+LTL-PBR-1BTP=0和
∫+∞0║e(A-BR-1BTP)t║2dt<+∞,其中R≥0;
4. n(?):Z→Z是强连续的,且存在k≥0和β>0使得
∫+∞0║n(u(t))║2dt≤k∫+∞0║u(t)║2dt,
1+β/2∫+∞0dt≤∫+∞0dt.
那末方程dx^(t)/dt=Ax^(t)+Bn(-R-1BTPx^(t))的mild解是渐近稳定的。 |
英文摘要 |
The following theorem is proved directly.
Theorem Assume that
1. x(t)is the mild solution of equation
dx(t)/dt=Ax(t)+Bu(t),x(0)=x0,
where A is the infinitesimal generator of a strongly continuous semigroup eAt(t≥0)on Hilbert space X, u(?)∈L2([0,+∞],Z)and B∈L(Z,X);
2. ∫∞0║u(t)║2dt<+∞ and ∫∞0║Lx(t)║2dt<+∞imply
∫+∞0║x(t)║2dt<+∞;
3. P≥0satisfies
ATP+PA+LTL-PBR-1BTP=0
and
∫+∞0║e(A-BR-1BTP)t║2dt<+∞,
where R≥0;
4. n(?):Z→Z continuous and there exist constants k≥0 and β>0 such that
∫+∞0║n(u(t))║2dt≤k∫+∞0║u(t)║2dt,
1+β/2∫+∞0dt≤∫+∞0dt.
Then the mild solution of equation
dx^(t)/dt=Ax^(t)+Bn(-R-1BTPx^(t))
is asymptotically stable.
This theorem has been pointed out by Tolle, but there are some mistakes in the proof of Tolle. |
|
|
|
|
|