引用本文: | 刘和涛.一类时滞微分系统无条件稳定的代数判定[J].控制理论与应用,1986,3(1):106~110.[点击复制] |
Liu Hetao.THE ALGEBRAIC CRITERION FOR UNCONDITIONAL STABILITY FOR A CLASS OF DIFFERENTIAL SYSTEMS WITH TIME DELAY[J].Control Theory and Technology,1986,3(1):106~110.[点击复制] |
|
一类时滞微分系统无条件稳定的代数判定 |
THE ALGEBRAIC CRITERION FOR UNCONDITIONAL STABILITY FOR A CLASS OF DIFFERENTIAL SYSTEMS WITH TIME DELAY |
摘要点击 931 全文点击 521 投稿时间:1984-03-28 修订日期:1985-12-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1986,3(1):106-110 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
考虑定常的时滞微分系统
(*) x?(t)=Ax(t)+Bx(t-τ),τ≥0,A,B为常数矩阵。
如果对任何实数τ≥0,系统(*)的零解均为渐近稳定,则称系统(*)为无条件稳定。(*)为无条件稳定的代数判定问题由A.A.AНЛPHOB[1]于1946年提出。对于A、B为2X2矩阵的情形,文[2,3,4]考虑了这类问题,但所得形式不够明显或条件不够完整。1984年文[5]对此问题给出了结论。本文给出反例以说明文[5]定理4.1所给的代数判定条件不是必要的。我们在此给出了A、B为2X2矩阵时的代数判定,它被归结为四次实系数方程无正根的代数判定。 |
英文摘要 |
The problem about the algebraic criterion for unconditional stability with respect to all delay τ for the following system
x?(t)=Ax(t)+Bx(t-τ),τ≥0,A,B are constant matrices.
Has been proposed by A.A.AНЛPHOB[1] in 1946. In case A, B has are 2X2 matrices [2,3,4] have considered this problem, but the results they have given are not evident and not complete. [5] has given a result recently (1984). In this Paper we give a counter example to show that the result given in [5] is incorrect, that is, problem to a algebraic criterion of the nonexistence of positive roots of a fourth order equation with real coefficients, in this way, we give the corresponding result for the case where A, B are 2X2 matrices. |
|
|
|
|
|