引用本文: | 朱其吉.一类半线性椭圆型分布参数控制系统的最大值原理[J].控制理论与应用,1986,3(3):120~129.[点击复制] |
Zhu Qiji.MAXIMUM PRINCIPLE FOR CONTROL SYSTEM GOVERNED BY ELLIPTIC PARTIAL DIFFERENTIAL EQUATION[J].Control Theory and Technology,1986,3(3):120~129.[点击复制] |
|
一类半线性椭圆型分布参数控制系统的最大值原理 |
MAXIMUM PRINCIPLE FOR CONTROL SYSTEM GOVERNED BY ELLIPTIC PARTIAL DIFFERENTIAL EQUATION |
摘要点击 1099 全文点击 585 投稿时间:1983-12-24 修订日期:1986-03-17 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1986,3(3):120-129 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
本文给出半线性椭圆型分布参数控制系统
Ay(u)+b(u,y(u))=f(u),
Y(u)Ⅰ??=0,
在一般泛函指标下的最大值原理。 |
英文摘要 |
In this paper, we consider the following optimal control problem:
minimize∫?g(y(u),u)
subject to
Ay(u)+b(u,y(u))=f(u)
where A is a elliptic partial differential operator of second order and b, f, g are functions satisfying certain smooth conditions. The main result is:
Theorem. Let u*∈Uod be the solution of the above problem and y* be the corresponding solution of the control system. Then for almost all x∈?, we have
p*(x)(b(x,u*(x),y*(x))-f(x,u*(x)))-g(x,y*(x),u*(x))
=max p*(x)(b(x,u*(x),y*(x))-f(x,u)-g(x,y*(x),u)
where p*( 。) is the solution of the corresponding adjoint system
Ap*+?b/?y(u*,y*), p*Ι??=0
Example of applications is given. |
|
|
|
|
|