引用本文: | 王耀青 ,吕勇哉.LQ最优控制之逆问题的研究[J].控制理论与应用,1989,6(4):9~18.[点击复制] |
Wang Yaoqing, Lu Yongzai.Study on the Inverse Problem of LQ Optimal Control[J].Control Theory and Technology,1989,6(4):9~18.[点击复制] |
|
LQ最优控制之逆问题的研究 |
Study on the Inverse Problem of LQ Optimal Control |
摘要点击 1126 全文点击 467 投稿时间:1987-11-04 修订日期:1989-03-13 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1989,6(4):9-18 |
中文关键词 最优控制 加权矩阵 LQ逆问题 特征值 特征多项式 |
英文关键词 Optimal control Weighting matrices LQ inverse problem Eigenvalues Characteristic polynomials. |
基金项目 |
|
中文摘要 |
本文通过适当地选取LQ性能指标函数中的加权矩阵R,给出了该二次型性能指标函数中的另一个加权矩阵Q与系统的开环特征多项式、闭环特征多项式的系数以及系数的系数矩阵A、B之间的对应关系。如果给定了一个系统以及该系统的一组最优闭环极点,就可以求得矩阵Q。同时,用本文的研究成果,还可以直接确定系统的最优状态反馈系数矩阵。 |
英文摘要 |
In this paper, the relation between the weighting matrix Q in a linear quadratic performance index and the coefficients of the closed-loop characteristic polynomial, Open-loop characteristic polynomial and the coefficients matrices A, B of a system is developed via appropriately choosing the other weighting matrix R in the LQ performance index. With the result, Q can readily be determined if an open-loop system and its desired Optimal closed-loop eigenvalues are given. Besides, the optimal state feedback gain matrix for the system under study is also given through using the proposed results. |
|
|
|
|
|