引用本文:史定华.可修排队系统Mx/G (M/H)1的瞬态解[J].控制理论与应用,1994,11(6):681~688.[点击复制]
SHI Dinghua.The Transient Solution of the Repairable Queueing System Mx/G (M/H)1[J].Control Theory and Technology,1994,11(6):681~688.[点击复制]
可修排队系统Mx/G (M/H)1的瞬态解
The Transient Solution of the Repairable Queueing System Mx/G (M/H)1
摘要点击 1087  全文点击 460  投稿时间:1993-09-11  修订日期:1994-04-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1994,11(6):681-688
中文关键词  排队论  可靠性理论  可修排队系统  向量马氏过程(方法)
英文关键词  queueing theory  reliability theory  repairable queueing system  vector Markov process (method)
基金项目  
作者单位
史定华 上海科技大学数学系 
中文摘要
      本文研究一个典型的批到达可修排队系统Mx/G (M/H)1。记号(M/H)表服务台寿命服从指数分布,而其修理时间为一连续型分布。利用向量马氏过程方法,我们得到了它的瞬态解。特别是发现了服务台的可靠性指标仅依赖于可修排队系统的空闲概率,或等价地仅依赖于它的忙期和忙循环。
英文摘要
      This paper is concerned with the Repairable Queueing Systems (RQS), the Mx/G (M/H)1 is typical bulk-arrival RQS. The notatin (M/H) represents that the server lifetime is exponentially distributed, while its repair time has a general continuous distribution. By using the method of vector Markov process, its transient solution is easily obtained. Especially, the reliability indices of the server are only dependent on the idle probability of the RQS, or equivalently, on the busy period and busy cycle.