引用本文:丁锋.多变量系统的辅助模型辨识方法的收敛性分析*[J].控制理论与应用,1997,14(2):192~200.[点击复制]
DING Feng.Convergence Analysis of the Auxiliary Model Identification Algorithm for Multivariable Systems[J].Control Theory and Technology,1997,14(2):192~200.[点击复制]
多变量系统的辅助模型辨识方法的收敛性分析*
Convergence Analysis of the Auxiliary Model Identification Algorithm for Multivariable Systems
摘要点击 1142  全文点击 522  投稿时间:1995-03-12  修订日期:1996-09-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1997,14(2):192-200
中文关键词  多变量系统  参数估计  条件数  辅助模型方法  鞅收敛定理
英文关键词  Multivariable system  parameter estimation  conditional number  auxiliary model identification algorithm  martingale convergence theorem
基金项目  
作者单位
丁锋 清华大学自动化系 
中文摘要
      丁锋,谢新民[1]假设协方差阵P0-1(t)=的最大特征值与最小特征值之比(即条件数)有界,和系统噪声{w(t)}方差有界,证明了辅助模型辨识其法参数估计的一致收致性.本文将分别放松这两个条件,即ⅰ)条件数无界,ⅱ)系统噪声为非平稳噪声,且方差无界,探讨了辅助模型算法的收敛性.分析表明在这种较弱的假设下,辅助模型算法保持很强的鲁棒性,参数估计是一致收敛的.
英文摘要
      The convergence of the recursive auxiliary model (RAM)identification algorithm was proved provided that both ratio of the maximum to minimum eigenvalues of the covariance matrix (t)= [i. e. conditional number] and the variance of the observation noise {w(t)} are bounded in reference [1]. In this paper,the convergence rate of RAM algorithm is studied under either unbounded conditional number or unbounded noise variance. The results show that the parameter estimates given by RAM algorithm are consistently convergent and that this algorithm is robust.