引用本文:章 云 , 毛宗源, 周其节 , 徐建闽 ,杨宜民.一种推广的模糊神经网络及学习算法[J].控制理论与应用,1998,15(1):148~151.[点击复制]
ZHANG Yun, MAO Zongyuan, ZHOU Qijie and XU Jianmin.A Generalized Fuzzy Neural Network and Its Learning Algorithm ZHANG Yun, MAO Zongyuan, ZHOU Qijie and XU Jianmin[J].Control Theory and Technology,1998,15(1):148~151.[点击复制]
一种推广的模糊神经网络及学习算法
A Generalized Fuzzy Neural Network and Its Learning Algorithm ZHANG Yun, MAO Zongyuan, ZHOU Qijie and XU Jianmin
摘要点击 1078  全文点击 443  投稿时间:1996-07-29  修订日期:1997-11-17
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1998,15(1):148-151
中文关键词  模糊系统  神经网络  系统辨识  局部模型
英文关键词  fuzzy system  neural network  identification  local model
基金项目  
作者单位
章 云 , 毛宗源, 周其节 , 徐建闽 ,杨宜民  
中文摘要
      本文采用广义模糊神经网络实现分段建模的思想. 给出了一种广义k-均值聚类算法. 该算法能同时确定模糊规则的个数和相应的参数. 仿真结果表明该算法是可行和有效的.
英文摘要
      This paper presents a generalized fuzzy neural network that can realize the strategy about ap- proximating a function using piecewise models. A generalized k- means algorithm is given. The number and pa- rameters of fuzzy rules can be simultaneously obtained by the algorithm. Computer simulations show that the method is feasible and efficient.