引用本文:陈小红,高峰, 钱积新 , 孙优贤.基于径基函数神经网络的精馏塔自适应控制[J].控制理论与应用,1998,15(2):226~231.[点击复制]
CHEN Xiaohong,GAO Feng, QIAN Jixin and SUN Youxian.Adaptive Control of Distillation Columns Based on RBF Neural Networks[J].Control Theory and Technology,1998,15(2):226~231.[点击复制]
基于径基函数神经网络的精馏塔自适应控制
Adaptive Control of Distillation Columns Based on RBF Neural Networks
摘要点击 1005  全文点击 514  投稿时间:1996-04-30  修订日期:1997-03-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1998,15(2):226-231
中文关键词  精馏塔  非线性  RBF神经网络  逆动态模型  自适应控制  RLS算法
英文关键词  distillation column  nonlinear  RBF nural networks  inverse dynamic model  adaptive control  RLS algorithm
基金项目  
作者单位
陈小红,高峰, 钱积新 , 孙优贤  
中文摘要
      精馏塔是化工过程中最常用,最重要的操作单元,其本质的非线性及时变性使得对它的控制非常困难。本文提出了一种基于径基函数(RBF)网络的自适应控制方案。该方案简捷、可靠,具有很强的鲁棒性和抗干扰性能。将该方案应用在工业脱乙烷塔的控制中得到了令人满意的结果。
英文摘要
      Disillation columns are the most usual and important operating units in the process of chemical engineering. They are non-linear and time-varying, and these characteristics make the design of the control scheme very difficult. This paper proposed an adaptive control strategy based on radial basis function (RBF) neural network. The control scheme is simple, relizble and possesses strong robustness and disturbance rejection. Fairly good control results were obtained when the control scheme was applied to a distillation column.