引用本文:赵克友.二次曲线极点区域与H2性能约束下不确定系统的参数摄动界*[J].控制理论与应用,1998,15(4):615~619.[点击复制]
ZHAO Keyou.Parametric Perturbation Bounds for Uncertain Systemswith Quadric-Curve Pole Location and H2 Performance Constraints[J].Control Theory and Technology,1998,15(4):615~619.[点击复制]
二次曲线极点区域与H2性能约束下不确定系统的参数摄动界*
Parametric Perturbation Bounds for Uncertain Systemswith Quadric-Curve Pole Location and H2 Performance Constraints
摘要点击 873  全文点击 481  投稿时间:1996-11-04  修订日期:1997-09-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1998,15(4):615-619
中文关键词  极点分布  H2性能  鲁棒性  非线性摄动  状态空间模型
英文关键词  pole location  H2 performance  robustness  nonlinear perturbation  state space models
基金项目  
作者单位
赵克友  
中文摘要
      考虑极点囿于二次曲线所围成的区域且H2性能小于某给定容限下线性不确定系统的参数最大摄动区域,系统由状态空间模型描述且非线性依赖摄动参量. 本文将给出参量的最大摄动区间的计算公式(对单参数情况),和最大摄动圆盘的算法(对两参数情况). 并指出极点分布鲁棒性与H2性能鲁棒性在原理上的相似性.
英文摘要
      Consider the maximal perturbation region for linear continuous-time uncertain systems with quadric-curve pole location and H2 performance constraints; the systems are described by state space models which depend nonlinearly on some perturbation parameters. This paper will give formulas for calculating the maximal parametric perturbation interval (in single parameter cases) and algorithm for calculating the maxi-mal parametric perturbation disk (in two parameter cases), and also corroborate, in principle, the similarity between pole location and H2 performance robustness.