引用本文:王科俊,金鸿章, 李国斌.综合反向传播算法[J].控制理论与应用,1999,16(5):739~743.[点击复制]
Wang Kejun, Jin Hongzhang and Li Guobin.A Synthetically Backpropagation Algorithm[J].Control Theory and Technology,1999,16(5):739~743.[点击复制]
综合反向传播算法
A Synthetically Backpropagation Algorithm
摘要点击 1144  全文点击 522  投稿时间:1997-04-23  修订日期:1998-09-18
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1999,16(5):739-743
中文关键词  神经网络  学习算法  广义指标函数
英文关键词  neural network  leaming algorithm  generalindex function
基金项目  
作者单位
王科俊,金鸿章, 李国斌  
中文摘要
      提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习过程中不平衡现象的能力.对比实验表明该算法有比基本BP算法快得多的收敛速度,并能取得全局最优解.
英文摘要
      This paper presents a synthetically backpropagation algorithm for multilayered forward neLual networks.A new general index function that consider the effect of absolute error and relative error on NN learing and performance and the back-propagation technique based on searching output space are proposed and used in the algorithm.The algorithm has botha dynami-cal adaptive regulation leaming rate and a variable momentum coefficient,and has ability of self regulation active characteristic, eliminating flat phenomenon and convergence no equilibrium phenomenon during training.The contrast experiments indicate that the algorithm has more fast convergence speed than BP algorithm and can achieve a global optimal solution.