引用本文:陈伯山,刘永清.非线性微分代数系统的稳定性[J].控制理论与应用,2000,17(1):40~44.[点击复制]
CHEN Bo-shan,LIU Youg-qing.The Stability of Nonlinear Differential Algebraic Systems[J].Control Theory and Technology,2000,17(1):40~44.[点击复制]
非线性微分代数系统的稳定性
The Stability of Nonlinear Differential Algebraic Systems
摘要点击 1449  全文点击 855  投稿时间:1999-03-09  修订日期:1999-06-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2000,17(1):40-44
中文关键词  微分代数系统  正则性  受限系统  稳定性
英文关键词  differential algebraic system  regularization  constrained systems  stability
基金项目  
作者单位
陈伯山 湖北师范学院数学系, 黄石 435002 
刘永清 华南理工大学 自动控制工程系, 广州 510641 
中文摘要
      本文发展了微分代数系统的稳定性理论, 讨论了微分代数系统在平衡点近旁的正则性问题, 给出其在平衡点处的受限形式, 建立了受限系统Lyapunov稳定性的基本定理, 得到了微分代数系统平凡解渐近稳定的判别准则.
英文摘要
      In this paper we consider the problem of stability of the differential algebraic system. First of all, we discuss the regularization in equilibrium for nonlinear differential algebraic systems. Lyapunov stability theory for conventional system in a natural way to nonlinear constrained systems, and some stability theorems for nonlinear constrained systems are given. By making use of the regularization results of the nonlinear differential algebraic systems and stability theorems of nonlinear constrained systems. we have obtained some stability results for nonlinear differential algebraic systems