引用本文:赖晓平,周鸿兴,云昌钦.混合模型神经网络在短期负荷预测中的应用[J].控制理论与应用,2000,17(1):69~72.[点击复制]
LAI Xiao-ping,ZHOU Hong-xing,YUN Chang-qin.Application of Hybrid Model Neural Networks to Short Term Electric Load Forecasting[J].Control Theory and Technology,2000,17(1):69~72.[点击复制]
混合模型神经网络在短期负荷预测中的应用
Application of Hybrid Model Neural Networks to Short Term Electric Load Forecasting
摘要点击 1473  全文点击 891  投稿时间:1998-09-14  修订日期:1999-07-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2000.1.016
  2000,17(1):69-72
中文关键词  混合模型神经网络  短期负荷预测
英文关键词  hybrid model neural networks  short term electric load forecasting
基金项目  国家自然科学基金(69774002)资助项目.
作者单位
赖晓平 山东大学 威海分校 控制工程系, 山东 威海 264209 
周鸿兴 山东大学 数学院, 山东 济南 250100 
云昌钦 山东大学 威海分校 电子系统工程系, 山东 威海 264209 
中文摘要
      提出了可应用于电力系统负荷预测的混合模型神经网络方法, 该方法同时具有电力系统负荷预测的传统方法的优点及人工神经网络方法的优点. 该方法中, 不同的负荷分量采用不同类型的预测方法, 并采用基本频率的谐振分量作神经网络的输入, 神经网络的训练采用快速的学习算法进行. 该方法具有很强的实时性和适应性, 适用于没有气象资料的应用场合. 仿真计算的结果表明, 预测精度较传统方法来得高.
英文摘要
      This paper presents a hybrid model neural network (HMNN) based short term electric load forecasting approach.This approach combines the traditional time series model with the neural network approach.Some load components are forecasted with traditional methods and others with neural network approaches.The base component,which is periodic for the 24 hour forecasting,is modeled with a neural network.The harmonic components of the intrinsic frequency are chosen as input variables of the neural network and the neural network is trained with a rapid convergent learning algorithm.Simulation results indicate that the hybrid model neural network based load forecasting approach produces more accurate load forecasts in comparison to the traditional method and can be applied to the case of no whether material.