引用本文:王 凌,郑大钟.一种基于退火策略的混沌神经网络优化算法[J].控制理论与应用,2000,17(1):139~142.[点击复制]
WANG Ling,ZHENG Da-zhong.A Kind of Chaotic Neural Network Optimization Algorithm Based on Annealing Strategy[J].Control Theory and Technology,2000,17(1):139~142.[点击复制]
一种基于退火策略的混沌神经网络优化算法
A Kind of Chaotic Neural Network Optimization Algorithm Based on Annealing Strategy
摘要点击 1505  全文点击 1014  投稿时间:1997-10-31  修订日期:1998-11-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2000.1.035
  2000,17(1):139-142
中文关键词  退火策略  混沌神经网络  优化TSP
英文关键词  annealing strategy  chaotic neural network  optimization  TSP
基金项目  国家自然科学基金(69684001); 国家攀登计划资助项目资助项目.
作者单位
王 凌 清华大学 自动化系, 北京 100084 
郑大钟 清华大学 自动化系, 北京 100084 
中文摘要
      Hopfield网络 (HNN)中引入混沌机制, 首先在混沌动态下粗搜索, 并利用退火策略控制混沌动态退出和逆分岔出现, 进而HNN梯度优化搜索, 提出了一种具有随机性和确定性并存的优化算法. 对经典旅行商 (TSP)的研究, 表明算法具有很强的克服陷入局部极小能力, 较大程度提高了优化、时间和对初值的鲁棒性能, 同时给出了模型参数对性能影响的一些结论.
英文摘要
      This paper presents a self organization optimization algorithm,which combines stochastic with deterministic property to introduce chaos mechanism into Hopfield neural network(HNN) to coarsely search the optimum under chaotic dynamics and control the chaotic dynamics by annealing strategy to perform inverse bifurcation and disappear.After that,the gradient property of HNN is used to reach stable point.Simulation results about two typical TSP problems show that such an algorithm,which is robust with initial states,can avoid getting stuck in local minima and has better convergence property as well as time property.Moreover,some conclusions about the effect of parameters on the model are summed up.