引用本文:李 杰,韩正之.一种估计人工神经网络泛化误差的新方法[J].控制理论与应用,2001,18(2):257~259.[点击复制]
LI Jie,HAN Zheng-zhi.A New Method to Estimate the Generalization Error of Artificial Neural Network[J].Control Theory and Technology,2001,18(2):257~259.[点击复制]
一种估计人工神经网络泛化误差的新方法
A New Method to Estimate the Generalization Error of Artificial Neural Network
摘要点击 1832  全文点击 1126  投稿时间:1998-12-28  修订日期:2000-01-10
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2001,18(2):257-259
中文关键词  人工神经网络  泛化误差  结构学习  随机点集
英文关键词  aritificial neural network  generalization  constructional learning  stochastic set
基金项目  国家自然科学基金(69874025)的资助.
作者单位
李 杰 上海交通大学 智能工程研究所, 上海 200030 
韩正之 上海交通大学 智能工程研究所, 上海 200030 
中文摘要
      神经网络的结构学习就是要确定网络的拓扑, 使之有较好的泛化能力. 本文考虑了确定性前向网络, 而其训练集合是随机点集的结构学习问题. 文章定义了一种新的结构学习目标函数, 给出了它与目前常用的目标函数比较的优越性, 讨论了相关的学习算法, 还给出了一个例子说明这种学习的效果.
英文摘要
      The constructional learning is used to determine the architecture of neural network such that the network holds a satisfactory generalization. This paper considers the constructional learning in the case where the training set is randomly chosen from an input output space. A new objective function of constructional learning is presented. It is illustrated the reason why this objective function is superior to other functions. The learning algorithm for this objective function is also analyzed. Finally, a simulation example is given to show the efficiency of the method presented in this paper.