引用本文:陈阳舟,陈善本.周期黎卡提微分方程正定解的存在性(英文)[J].控制理论与应用,2001,18(3):341~345.[点击复制]
CHEN Yang-zhou,CHEN Shan-ben.Existence of Positive Definite Solution to Periodic Riccati Differential Equation[J].Control Theory and Technology,2001,18(3):341~345.[点击复制]
周期黎卡提微分方程正定解的存在性(英文)
Existence of Positive Definite Solution to Periodic Riccati Differential Equation
摘要点击 1560  全文点击 1007  投稿时间:1999-06-07  修订日期:2000-08-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2001.3.005
  2001,18(3):341-345
中文关键词  周期黎卡提微分方程  埃尔米特周期正定(HPPD)解  状态空间基底变换  能稳性和能检测性
英文关键词  periodic Riccati differential equation  Hermitian periodic positive definite(HPPD) solution  state space basis transform  stabilizability and detectability
基金项目  
作者单位
陈阳舟 北京工业大学 电子信息与控制工程学院, 北京 100022 
陈善本 上海交通大学 焊接研究所, 上海 200030 
中文摘要
      讨论了标准的周期黎卡提微分方程. 给出了其存在埃尔米特周期正定(HPPD)解的一个完整的充分必要条件. 准确地说, 在经过一个适当的状态空间基底变换后该条件通过能稳性和能检测性概念表述. 结果表明, 当HP PD解存在时, 它或者是唯一的, 或者有无限多个. 这一结果可以看作是Richardson和Kwong的结果对周期时变情况的扩展.
英文摘要
      This paper deals with the standard periodic Riccati differential equation. A complete necessary and sufficient condition is presented for the existence of Hermitian periodic positive definite(HPPD) solution. Precisely, after a proper change of basis in the state space the condition can be expressed in terms of the notions of stabilizability and detectability. Moreover, it is shown that when an HPPD solution exists, it is either unique, or else there are uncountably many such solutions. The result of the paper can be considered as a valid extension of Richardson and Kwong's result to the periodic version.