引用本文: | 张诚坚,廖晓昕.(ρ, σ)-方法关于刚性延迟微分代数系统的非线性稳定性[J].控制理论与应用,2001,18(6):827~832.[点击复制] |
ZHANG Cheng-jian,LIAO Xiao-xin.Nonlinear Stability of(ρ,σ)-Methods for Stiff Delay-Differential-Algebraic Systems[J].Control Theory and Technology,2001,18(6):827~832.[点击复制] |
|
(ρ, σ)-方法关于刚性延迟微分代数系统的非线性稳定性 |
Nonlinear Stability of(ρ,σ)-Methods for Stiff Delay-Differential-Algebraic Systems |
摘要点击 1546 全文点击 992 投稿时间:2000-03-15 修订日期:2000-11-27 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2001.6.004 |
2001,18(6):827-832 |
中文关键词 (ρ,σ)-方法 刚性延迟微分代数系统 非线性稳定 |
英文关键词 (ρ,σ)-methods stiff delay differential algebraic systems nonlinear stability |
基金项目 |
|
中文摘要 |
本文涉及(ρ, σ)方法应用于1-指标的非线性刚性延迟微分代数系统的稳定性. 证明了求解常微分方程(ODEs)的(ρ,σ)-方法的(强 )G(c, p, q)-代数稳定性导致相应延迟微分代数系统方法的(渐近)整体稳定性. |
英文摘要 |
This paper deals with the stability of(ρ,σ)-methods for stiff delay differential algebraic systems with one index. In particular, we prove that(resp. strong) G(c,p,q)-algebraic stability of the(ρ,σ)-methods for ordinary differential equations(ODEs) leads to(resp. asymptotic) global stability of the corresponding methods for stiff delay differential algebraic systems. |
|
|
|
|
|