引用本文: | 张成科,王行愚.线性时变二次微分对策Nash策略的小波分析法(Ⅱ)——小波逼近解的收敛性[J].控制理论与应用,2002,19(2):178~182.[点击复制] |
ZHANG Chengke,WANG Xingyu.Analysis Method for Nash Strategy of Linear Time Variant Quadratic Differential Game via Wavelets(Ⅱ) —Convergence of the Wavelet Approximation Solution[J].Control Theory and Technology,2002,19(2):178~182.[点击复制] |
|
线性时变二次微分对策Nash策略的小波分析法(Ⅱ)——小波逼近解的收敛性 |
Analysis Method for Nash Strategy of Linear Time Variant Quadratic Differential Game via Wavelets(Ⅱ) —Convergence of the Wavelet Approximation Solution |
摘要点击 1470 全文点击 1068 投稿时间:1999-05-20 修订日期:2001-02-28 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2002,19(2):178-182 |
中文关键词 Nash策略 小波逼近 均方收敛 |
英文关键词 Nash strategy wavelet approximation convergence in the mean square |
基金项目 高校博士学科点专项科研基金(96025110); 广东工业大学自选科研(993303)资助项目. |
|
中文摘要 |
研究小波逼近分析方法的收敛性问题, 对线性时变二次微分对策Nash策略情形, 证明了Nash策略的小波逼近解收敛于精确解, 基于小波逼近的多尺度多分辨特性, 给出了误差估计的阶数. |
英文摘要 |
This paper studies the convergence problem of the wavelet approximation analysis method. For Nash strategy of linear time variant quadratic differential game, we prove that the wavelet approximation solution of Nash strategy converge to the accurate solution. The order of error estimation is given based on the multi_scale multi_resolution approximation feature of wavelets. |