引用本文:刘 治,李春文.基于模糊神经网络的5连杆双足机器人混杂控制(英文)[J].控制理论与应用,2002,19(3):340~344.[点击复制]
LIU Zhi,LI Chunwen.Five-Link Biped Robot Hybrid Control via Fuzzy Neural Networks[J].Control Theory and Technology,2002,19(3):340~344.[点击复制]
基于模糊神经网络的5连杆双足机器人混杂控制(英文)
Five-Link Biped Robot Hybrid Control via Fuzzy Neural Networks
摘要点击 1325  全文点击 894  投稿时间:2001-03-28  修订日期:2001-12-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2002,19(3):340-344
中文关键词  机器人控制  混杂控制  模糊神经网络  鲁棒控制  逆系统方法
英文关键词  robotic control  hybrid control  FNN  robust control  inverse system method
基金项目  
作者单位E-mail
刘 治 清华大学 自动化系, 北京 100084 liuzhi00@mails.tsinghua.edu.cn  
李春文 清华大学 自动化系, 北京 100085  
中文摘要
      针对双足机器人单脚支撑期控制问题, 提出了一种新型的模糊神经网络混杂控制方法. 该种方法结合了模糊神经网络、H 控制及逆系统方法的优点. 应用了一种新的多层模糊CMAC神经网络对系统进行逼近, 一方面将模糊神经网络的构造误差看作系统的干扰, 利用H 控制对干扰进行抑制. 另一方面利用模糊神经网络对系统模型进行逼近, 为逆系统的构建和H 控制率的设计提供了有效的系统信息. 并证明了在采用本文提出的模糊神经网络和自适应算法后可以抑制 L2 增益.
英文摘要
      The paper presents a new fuzzy neural networks (FNN) hybrid controller to solve the trajectory tracking problem of biped robots in the single_support phase. The advantages of fuzzy neural network, H-infinity controller and inverse system method are integrated in this paper for control purpose. A new multi-layers fuzzy CMAC is applied to approximate the system information of biped robot .On the one hand, we regard construction errors of FNN as external disturbances, and then use H-infinity controller to attenuate such disturbances. On the other hand, apply the strong approximate capability of FNN to construct the inverse system and offer efficient system information to H-infinity controller. As the result, L-2 gain can be attenuated by the presented fuzzy neural network structure and adaptive algorithm.