引用本文:王 祁,沈国峰,张兆礼.Ney man-Person准则的神经网络实现新算法(英文)[J].控制理论与应用,2002,19(3):435~437.[点击复制]
WANG Qi,SHEN Guofeng,ZHANG Zhaoli.New Neural Network Realization Algorithm for Neyman-Person Criterion[J].Control Theory and Technology,2002,19(3):435~437.[点击复制]
Ney man-Person准则的神经网络实现新算法(英文)
New Neural Network Realization Algorithm for Neyman-Person Criterion
摘要点击 1470  全文点击 1495  投稿时间:1999-11-12  修订日期:2001-12-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2002.3.023
  2002,19(3):435-437
中文关键词  神经网络  数据融合  假设检验  Neyman-Person准则
英文关键词  neural network  data fusion  hypothesis testing  Neyman-Person criterion
基金项目  
作者单位E-mail
王 祁 哈尔滨工业大学 自动化测试与控制系, 哈尔滨 150001 wangqi@hope.hit.edu.cn  
沈国峰 哈尔滨工业大学 自动化测试与控制系, 哈尔滨 150002 Shenguofeng@0451.com  
张兆礼 哈尔滨工业大学 自动化测试与控制系, 哈尔滨 150003  
中文摘要
      假设检验中Neyman-Person准则是一种基于似然比的信号分类、检测、识别方法. 神经网络是实现这种判定准则的优选方案, 但是传统的最小平方学习算法, 如BP算法等, 往往不能取得全局最优解. 本文针对一种非最小平方学习算法, 提出了一种概率分配原则, 并给出了一种Neyman-Person准则的神经网络实现新算法. 文中对新算法在假设检验中的应用进行了仿真验证, 结果表明新算法具有更小的误差, 更加适用于Neyman-Person准则.
英文摘要
      Neyman-Person criterion in hypothesis testing is a method based on the probability rate for problems like classification, detection, and pattern recognition. Solutions through neural network to those problems would be very desirable. However, the traditional least square learning algorithms, like backpropagation, provide no guarantee for success. This paper intends to improve a kind of non-least-square learning algorithm, decide the criterion of the probability distribution and give a better algorithm based on the absolute error. Aside from theoretical argument,the proposed algorithm is examined on a simulated problem and compared with other algorithms. The simulative result proves that the new algorithm has fewer errors and is more suitable for the Neyman-Person criterion.