引用本文:陈 非,敬忠良,姚晓东.一种模糊神经网络的快速参数学习算法[J].控制理论与应用,2002,19(4):583~587.[点击复制]
CHEN Fei,JING Zhong-liang,YAO Xiao-dong.Fast parameter learning algorithm for fuzzy neural networks[J].Control Theory and Technology,2002,19(4):583~587.[点击复制]
一种模糊神经网络的快速参数学习算法
Fast parameter learning algorithm for fuzzy neural networks
摘要点击 2036  全文点击 1994  投稿时间:2000-07-17  修订日期:2001-04-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2002.4.020
  2002,19(4):583-587
中文关键词  T-S模糊推理系统  多层前向神经网络  改进RLS算法  模糊神经网络
英文关键词  T-S fuzzy inference system  multi-layer neural networks  modified RLS algorithm  fuzzy neural networks (FNN)
基金项目  
作者单位E-mail
陈 非 上海交通大学 电子信息学院 航空航天信息与控制研究所, 上海 200030 fchen@sjtu.edu.cn  
敬忠良 上海交通大学 电子信息学院 航空航天信息与控制研究所, 上海 200030  
姚晓东 上海交通大学 电子信息学院 航空航天信息与控制研究所, 上海 200030  
中文摘要
      提出了一种新的模糊神经网络的快速参数学习算法, 采用一些特殊的处理, 可以用递推最小二乘法(RLS)来调整所有的参数. 以前的学习算法在调整模糊隶属度函数的中心和宽度的时候, 用的是梯度下降法, 具有容易陷入局部最小值点、收敛速度慢等缺点, 而本算法则可以克服这些缺点, 最后通过仿真验证了算法的有效性.
英文摘要
      A novel parameter learning algorithm for fuzzy neural networks (FNN) is proposed. The conventional methods usually use the gradient descent based backpropogation algorithm to adjust the center and width of the membership functions. To avoid the inborn problem of BP algorithm, such as local minima and slow convergence, a modified RLS method is employed here to adjust the parameters of FNN, which is faster than the conventional BP algorithm. The validity of this method has been demonstrated by simulation results.