引用本文:扈宏杰,尔联洁,刘金琨.一种快速对角回归神经网络控制算法[J].控制理论与应用,2002,19(5):777~780.[点击复制]
HU Hong-jie,ER Lian-jie,LIU Jin-kun.Fast algorithm for diagonal recurrent neural networks control system[J].Control Theory and Technology,2002,19(5):777~780.[点击复制]
一种快速对角回归神经网络控制算法
Fast algorithm for diagonal recurrent neural networks control system
摘要点击 1760  全文点击 912  投稿时间:2000-09-19  修订日期:2001-05-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2002,19(5):777-780
中文关键词  对角回归神经网络  自适应学习速率  权向量及权矩阵  收敛性
英文关键词  DRNN  adaptive learning rate  weight vector and weight matrix  convergence
基金项目  
作者单位E-mail
扈宏杰 北京航空航天大学自动控制系 北京100083 xuchunmei1030@sohu.com  
尔联洁 北京航空航天大学自动控制系 北京100083  
刘金琨 北京航空航天大学自动控制系 北京100083  
中文摘要
      文[1]定理1给出了一个基于Lyapunov函数的三层对角回归神经网络(DRNN)任意权参数学习速率的自适应调整算法, 而推导各层权自适应学习速率时没有严格满足定理1成立的必要条件, 故没能找到各学习速率的准确范围. 依据文[1]定理1,精确给出了各权向量及权矩阵学习速率的调整算法, 结果表明DRNN应具有更大的学习速率, 对应更加快速的收敛算法. 给出了相应的仿真结果.
英文摘要
      Convergence Theorem 1 in Ref. was given for three layers diagonal recurrent neural networks (DRNN) by introducing a Lyapunov function. Because the essential condition to Theorem 1 was neglected upper limits of learning rates for every weight vectors and matrix were not attained. Much bigger learning rates of all weight vectors and matrix are deduced precisely on the basis of convergence theorem 1 in Ref. , so a fast iterative algorithm is obtained. Simulation results are included.